Metamath Proof Explorer
Description: A ring isleft-Noetherian iff it is Noetherian as a left module over
itself. (Contributed by Stefan O'Rear, 24-Jan-2015)
|
|
Ref |
Expression |
|
Assertion |
df-lnr |
⊢ LNoeR = { 𝑎 ∈ Ring ∣ ( ringLMod ‘ 𝑎 ) ∈ LNoeM } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
clnr |
⊢ LNoeR |
1 |
|
va |
⊢ 𝑎 |
2 |
|
crg |
⊢ Ring |
3 |
|
crglmod |
⊢ ringLMod |
4 |
1
|
cv |
⊢ 𝑎 |
5 |
4 3
|
cfv |
⊢ ( ringLMod ‘ 𝑎 ) |
6 |
|
clnm |
⊢ LNoeM |
7 |
5 6
|
wcel |
⊢ ( ringLMod ‘ 𝑎 ) ∈ LNoeM |
8 |
7 1 2
|
crab |
⊢ { 𝑎 ∈ Ring ∣ ( ringLMod ‘ 𝑎 ) ∈ LNoeM } |
9 |
0 8
|
wceq |
⊢ LNoeR = { 𝑎 ∈ Ring ∣ ( ringLMod ‘ 𝑎 ) ∈ LNoeM } |