Metamath Proof Explorer


Definition df-lnr

Description: A ring isleft-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion df-lnr LNoeR = { 𝑎 ∈ Ring ∣ ( ringLMod ‘ 𝑎 ) ∈ LNoeM }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clnr LNoeR
1 va 𝑎
2 crg Ring
3 crglmod ringLMod
4 1 cv 𝑎
5 4 3 cfv ( ringLMod ‘ 𝑎 )
6 clnm LNoeM
7 5 6 wcel ( ringLMod ‘ 𝑎 ) ∈ LNoeM
8 7 1 2 crab { 𝑎 ∈ Ring ∣ ( ringLMod ‘ 𝑎 ) ∈ LNoeM }
9 0 8 wceq LNoeR = { 𝑎 ∈ Ring ∣ ( ringLMod ‘ 𝑎 ) ∈ LNoeM }