Metamath Proof Explorer


Definition df-logb

Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as ( B logb X ) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017)

Ref Expression
Assertion df-logb logb = ( 𝑥 ∈ ( ℂ ∖ { 0 , 1 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clogb logb
1 vx 𝑥
2 cc
3 cc0 0
4 c1 1
5 3 4 cpr { 0 , 1 }
6 2 5 cdif ( ℂ ∖ { 0 , 1 } )
7 vy 𝑦
8 3 csn { 0 }
9 2 8 cdif ( ℂ ∖ { 0 } )
10 clog log
11 7 cv 𝑦
12 11 10 cfv ( log ‘ 𝑦 )
13 cdiv /
14 1 cv 𝑥
15 14 10 cfv ( log ‘ 𝑥 )
16 12 15 13 co ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) )
17 1 7 6 9 16 cmpo ( 𝑥 ∈ ( ℂ ∖ { 0 , 1 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) )
18 0 17 wceq logb = ( 𝑥 ∈ ( ℂ ∖ { 0 , 1 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) )