| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clp |
⊢ limPt |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
1
|
cv |
⊢ 𝑗 |
| 5 |
4
|
cuni |
⊢ ∪ 𝑗 |
| 6 |
5
|
cpw |
⊢ 𝒫 ∪ 𝑗 |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
7
|
cv |
⊢ 𝑦 |
| 9 |
|
ccl |
⊢ cls |
| 10 |
4 9
|
cfv |
⊢ ( cls ‘ 𝑗 ) |
| 11 |
3
|
cv |
⊢ 𝑥 |
| 12 |
8
|
csn |
⊢ { 𝑦 } |
| 13 |
11 12
|
cdif |
⊢ ( 𝑥 ∖ { 𝑦 } ) |
| 14 |
13 10
|
cfv |
⊢ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) |
| 15 |
8 14
|
wcel |
⊢ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) |
| 16 |
15 7
|
cab |
⊢ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } |
| 17 |
3 6 16
|
cmpt |
⊢ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) |
| 18 |
1 2 17
|
cmpt |
⊢ ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |
| 19 |
0 18
|
wceq |
⊢ limPt = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |