Metamath Proof Explorer


Definition df-lp

Description: Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval . (Contributed by NM, 10-Feb-2007)

Ref Expression
Assertion df-lp limPt = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clp limPt
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 4 cuni 𝑗
6 5 cpw 𝒫 𝑗
7 vy 𝑦
8 7 cv 𝑦
9 ccl cls
10 4 9 cfv ( cls ‘ 𝑗 )
11 3 cv 𝑥
12 8 csn { 𝑦 }
13 11 12 cdif ( 𝑥 ∖ { 𝑦 } )
14 13 10 cfv ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) )
15 8 14 wcel 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) )
16 15 7 cab { 𝑦𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) }
17 3 6 16 cmpt ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } )
18 1 2 17 cmpt ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) )
19 0 18 wceq limPt = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) )