Metamath Proof Explorer


Definition df-lpidl

Description: Define the class of left principal ideals of a ring, which are ideals with a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion df-lpidl LPIdeal = ( 𝑤 ∈ Ring ↦ 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpidl LPIdeal
1 vw 𝑤
2 crg Ring
3 vg 𝑔
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 crsp RSpan
8 5 7 cfv ( RSpan ‘ 𝑤 )
9 3 cv 𝑔
10 9 csn { 𝑔 }
11 10 8 cfv ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } )
12 11 csn { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) }
13 3 6 12 ciun 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) }
14 1 2 13 cmpt ( 𝑤 ∈ Ring ↦ 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } )
15 0 14 wceq LPIdeal = ( 𝑤 ∈ Ring ↦ 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } )