Metamath Proof Explorer


Definition df-lpir

Description: Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion df-lpir LPIR = { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpir LPIR
1 vw 𝑤
2 crg Ring
3 clidl LIdeal
4 1 cv 𝑤
5 4 3 cfv ( LIdeal ‘ 𝑤 )
6 clpidl LPIdeal
7 4 6 cfv ( LPIdeal ‘ 𝑤 )
8 5 7 wceq ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 )
9 8 1 2 crab { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) }
10 0 9 wceq LPIR = { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) }