Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Principal ideal rings. Divisibility in the integers
df-lpir
Metamath Proof Explorer
Description: Define the class of left principal ideal rings, rings where every left
ideal has a single generator. (Contributed by Stefan O'Rear , 3-Jan-2015)
Ref
Expression
Assertion
df-lpir
⊢ LPIR = { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
clpir
⊢ LPIR
1
vw
⊢ 𝑤
2
crg
⊢ Ring
3
clidl
⊢ LIdeal
4
1
cv
⊢ 𝑤
5
4 3
cfv
⊢ ( LIdeal ‘ 𝑤 )
6
clpidl
⊢ LPIdeal
7
4 6
cfv
⊢ ( LPIdeal ‘ 𝑤 )
8
5 7
wceq
⊢ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 )
9
8 1 2
crab
⊢ { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) }
10
0 9
wceq
⊢ LPIR = { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) }