Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Norm Megill Projective geometries based on Hilbert lattices df-lplanes  
				
		 
		
			
		 
		Description:   Define the set of all "lattice planes" (lattice elements which cover a
       line) in a Hilbert lattice k  , in other words all elements of height
       3 (or lattice dimension 3 or projective dimension 2).  (Contributed by NM , 16-Jun-2012) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-lplanes ⊢   LPlanes  =  ( 𝑘   ∈  V  ↦  { 𝑥   ∈  ( Base ‘ 𝑘  )  ∣  ∃ 𝑝   ∈  ( LLines ‘ 𝑘  ) 𝑝  (  ⋖  ‘ 𝑘  ) 𝑥  } )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							clpl ⊢  LPlanes  
						
							1 
								
							 
							vk ⊢  𝑘   
						
							2 
								
							 
							cvv ⊢  V  
						
							3 
								
							 
							vx ⊢  𝑥   
						
							4 
								
							 
							cbs ⊢  Base  
						
							5 
								1 
							 
							cv ⊢  𝑘   
						
							6 
								5  4 
							 
							cfv ⊢  ( Base ‘ 𝑘  )  
						
							7 
								
							 
							vp ⊢  𝑝   
						
							8 
								
							 
							clln ⊢  LLines  
						
							9 
								5  8 
							 
							cfv ⊢  ( LLines ‘ 𝑘  )  
						
							10 
								7 
							 
							cv ⊢  𝑝   
						
							11 
								
							 
							ccvr ⊢   ⋖   
						
							12 
								5  11 
							 
							cfv ⊢  (  ⋖  ‘ 𝑘  )  
						
							13 
								3 
							 
							cv ⊢  𝑥   
						
							14 
								10  13  12 
							 
							wbr ⊢  𝑝  (  ⋖  ‘ 𝑘  ) 𝑥   
						
							15 
								14  7  9 
							 
							wrex ⊢  ∃ 𝑝   ∈  ( LLines ‘ 𝑘  ) 𝑝  (  ⋖  ‘ 𝑘  ) 𝑥   
						
							16 
								15  3  6 
							 
							crab ⊢  { 𝑥   ∈  ( Base ‘ 𝑘  )  ∣  ∃ 𝑝   ∈  ( LLines ‘ 𝑘  ) 𝑝  (  ⋖  ‘ 𝑘  ) 𝑥  }  
						
							17 
								1  2  16 
							 
							cmpt ⊢  ( 𝑘   ∈  V  ↦  { 𝑥   ∈  ( Base ‘ 𝑘  )  ∣  ∃ 𝑝   ∈  ( LLines ‘ 𝑘  ) 𝑝  (  ⋖  ‘ 𝑘  ) 𝑥  } )  
						
							18 
								0  17 
							 
							wceq ⊢  LPlanes  =  ( 𝑘   ∈  V  ↦  { 𝑥   ∈  ( Base ‘ 𝑘  )  ∣  ∃ 𝑝   ∈  ( LLines ‘ 𝑘  ) 𝑝  (  ⋖  ‘ 𝑘  ) 𝑥  } )