Metamath Proof Explorer


Definition df-lss

Description: Define the set of linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013)

Ref Expression
Assertion df-lss LSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎𝑠𝑏𝑠 ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clss LSubSp
1 vw 𝑤
2 cvv V
3 vs 𝑠
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 6 cpw 𝒫 ( Base ‘ 𝑤 )
8 c0
9 8 csn { ∅ }
10 7 9 cdif ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } )
11 vx 𝑥
12 csca Scalar
13 5 12 cfv ( Scalar ‘ 𝑤 )
14 13 4 cfv ( Base ‘ ( Scalar ‘ 𝑤 ) )
15 va 𝑎
16 3 cv 𝑠
17 vb 𝑏
18 11 cv 𝑥
19 cvsca ·𝑠
20 5 19 cfv ( ·𝑠𝑤 )
21 15 cv 𝑎
22 18 21 20 co ( 𝑥 ( ·𝑠𝑤 ) 𝑎 )
23 cplusg +g
24 5 23 cfv ( +g𝑤 )
25 17 cv 𝑏
26 22 25 24 co ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 )
27 26 16 wcel ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠
28 27 17 16 wral 𝑏𝑠 ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠
29 28 15 16 wral 𝑎𝑠𝑏𝑠 ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠
30 29 11 14 wral 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎𝑠𝑏𝑠 ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠
31 30 3 10 crab { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎𝑠𝑏𝑠 ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠 }
32 1 2 31 cmpt ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎𝑠𝑏𝑠 ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠 } )
33 0 32 wceq LSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎𝑠𝑏𝑠 ( ( 𝑥 ( ·𝑠𝑤 ) 𝑎 ) ( +g𝑤 ) 𝑏 ) ∈ 𝑠 } )