Step |
Hyp |
Ref |
Expression |
0 |
|
clss |
⊢ LSubSp |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑤 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑤 ) |
8 |
|
c0 |
⊢ ∅ |
9 |
8
|
csn |
⊢ { ∅ } |
10 |
7 9
|
cdif |
⊢ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) |
11 |
|
vx |
⊢ 𝑥 |
12 |
|
csca |
⊢ Scalar |
13 |
5 12
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
14 |
13 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) |
15 |
|
va |
⊢ 𝑎 |
16 |
3
|
cv |
⊢ 𝑠 |
17 |
|
vb |
⊢ 𝑏 |
18 |
11
|
cv |
⊢ 𝑥 |
19 |
|
cvsca |
⊢ ·𝑠 |
20 |
5 19
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
21 |
15
|
cv |
⊢ 𝑎 |
22 |
18 21 20
|
co |
⊢ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) |
23 |
|
cplusg |
⊢ +g |
24 |
5 23
|
cfv |
⊢ ( +g ‘ 𝑤 ) |
25 |
17
|
cv |
⊢ 𝑏 |
26 |
22 25 24
|
co |
⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) |
27 |
26 16
|
wcel |
⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
28 |
27 17 16
|
wral |
⊢ ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
29 |
28 15 16
|
wral |
⊢ ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
30 |
29 11 14
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
31 |
30 3 10
|
crab |
⊢ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } ) |
33 |
0 32
|
wceq |
⊢ LSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } ) |