Metamath Proof Explorer


Definition df-ltbag

Description: Define a well-order on the set of all finite bags from the index set i given a wellordering r of i . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion df-ltbag <bag = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ∃ 𝑧𝑖 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltb <bag
1 vr 𝑟
2 cvv V
3 vi 𝑖
4 vx 𝑥
5 vy 𝑦
6 4 cv 𝑥
7 5 cv 𝑦
8 6 7 cpr { 𝑥 , 𝑦 }
9 vh
10 cn0 0
11 cmap m
12 3 cv 𝑖
13 10 12 11 co ( ℕ0m 𝑖 )
14 9 cv
15 14 ccnv
16 cn
17 15 16 cima ( “ ℕ )
18 cfn Fin
19 17 18 wcel ( “ ℕ ) ∈ Fin
20 19 9 13 crab { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin }
21 8 20 wss { 𝑥 , 𝑦 } ⊆ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin }
22 vz 𝑧
23 22 cv 𝑧
24 23 6 cfv ( 𝑥𝑧 )
25 clt <
26 23 7 cfv ( 𝑦𝑧 )
27 24 26 25 wbr ( 𝑥𝑧 ) < ( 𝑦𝑧 )
28 vw 𝑤
29 1 cv 𝑟
30 28 cv 𝑤
31 23 30 29 wbr 𝑧 𝑟 𝑤
32 30 6 cfv ( 𝑥𝑤 )
33 30 7 cfv ( 𝑦𝑤 )
34 32 33 wceq ( 𝑥𝑤 ) = ( 𝑦𝑤 )
35 31 34 wi ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) )
36 35 28 12 wral 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) )
37 27 36 wa ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) )
38 37 22 12 wrex 𝑧𝑖 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) )
39 21 38 wa ( { 𝑥 , 𝑦 } ⊆ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ∃ 𝑧𝑖 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) )
40 39 4 5 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ∃ 𝑧𝑖 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ) }
41 1 3 2 2 40 cmpo ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ∃ 𝑧𝑖 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ) } )
42 0 41 wceq <bag = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ∃ 𝑧𝑖 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ) } )