Metamath Proof Explorer


Definition df-ltp

Description: Define ordering on positive reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-3.2 of Gleason p. 122. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-ltp <P = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltp <P
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 cnp P
5 3 4 wcel 𝑥P
6 2 cv 𝑦
7 6 4 wcel 𝑦P
8 5 7 wa ( 𝑥P𝑦P )
9 3 6 wpss 𝑥𝑦
10 8 9 wa ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 )
11 10 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 ) }
12 0 11 wceq <P = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 ) }