Metamath Proof Explorer


Definition df-ltrn

Description: Define set of all lattice translations. Similar to definition of translation in Crawley p. 111. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-ltrn LTrn = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltrn LTrn
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 vf 𝑓
8 cldil LDil
9 5 8 cfv ( LDil ‘ 𝑘 )
10 3 cv 𝑤
11 10 9 cfv ( ( LDil ‘ 𝑘 ) ‘ 𝑤 )
12 vp 𝑝
13 catm Atoms
14 5 13 cfv ( Atoms ‘ 𝑘 )
15 vq 𝑞
16 12 cv 𝑝
17 cple le
18 5 17 cfv ( le ‘ 𝑘 )
19 16 10 18 wbr 𝑝 ( le ‘ 𝑘 ) 𝑤
20 19 wn ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤
21 15 cv 𝑞
22 21 10 18 wbr 𝑞 ( le ‘ 𝑘 ) 𝑤
23 22 wn ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤
24 20 23 wa ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 )
25 cjn join
26 5 25 cfv ( join ‘ 𝑘 )
27 7 cv 𝑓
28 16 27 cfv ( 𝑓𝑝 )
29 16 28 26 co ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) )
30 cmee meet
31 5 30 cfv ( meet ‘ 𝑘 )
32 29 10 31 co ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 )
33 21 27 cfv ( 𝑓𝑞 )
34 21 33 26 co ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) )
35 34 10 31 co ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 )
36 32 35 wceq ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 )
37 24 36 wi ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) )
38 37 15 14 wral 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) )
39 38 12 14 wral 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) )
40 39 7 11 crab { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) }
41 3 6 40 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } )
42 1 2 41 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } ) )
43 0 42 wceq LTrn = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } ) )