Step |
Hyp |
Ref |
Expression |
0 |
|
cltrn |
⊢ LTrn |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vf |
⊢ 𝑓 |
8 |
|
cldil |
⊢ LDil |
9 |
5 8
|
cfv |
⊢ ( LDil ‘ 𝑘 ) |
10 |
3
|
cv |
⊢ 𝑤 |
11 |
10 9
|
cfv |
⊢ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) |
12 |
|
vp |
⊢ 𝑝 |
13 |
|
catm |
⊢ Atoms |
14 |
5 13
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
15 |
|
vq |
⊢ 𝑞 |
16 |
12
|
cv |
⊢ 𝑝 |
17 |
|
cple |
⊢ le |
18 |
5 17
|
cfv |
⊢ ( le ‘ 𝑘 ) |
19 |
16 10 18
|
wbr |
⊢ 𝑝 ( le ‘ 𝑘 ) 𝑤 |
20 |
19
|
wn |
⊢ ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 |
21 |
15
|
cv |
⊢ 𝑞 |
22 |
21 10 18
|
wbr |
⊢ 𝑞 ( le ‘ 𝑘 ) 𝑤 |
23 |
22
|
wn |
⊢ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 |
24 |
20 23
|
wa |
⊢ ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) |
25 |
|
cjn |
⊢ join |
26 |
5 25
|
cfv |
⊢ ( join ‘ 𝑘 ) |
27 |
7
|
cv |
⊢ 𝑓 |
28 |
16 27
|
cfv |
⊢ ( 𝑓 ‘ 𝑝 ) |
29 |
16 28 26
|
co |
⊢ ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) |
30 |
|
cmee |
⊢ meet |
31 |
5 30
|
cfv |
⊢ ( meet ‘ 𝑘 ) |
32 |
29 10 31
|
co |
⊢ ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) |
33 |
21 27
|
cfv |
⊢ ( 𝑓 ‘ 𝑞 ) |
34 |
21 33 26
|
co |
⊢ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) |
35 |
34 10 31
|
co |
⊢ ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) |
36 |
32 35
|
wceq |
⊢ ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) |
37 |
24 36
|
wi |
⊢ ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) |
38 |
37 15 14
|
wral |
⊢ ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) |
39 |
38 12 14
|
wral |
⊢ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) |
40 |
39 7 11
|
crab |
⊢ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } |
41 |
3 6 40
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } ) |
42 |
1 2 41
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } ) ) |
43 |
0 42
|
wceq |
⊢ LTrn = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( LDil ‘ 𝑘 ) ‘ 𝑤 ) ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 ∧ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ) → ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) } ) ) |