| Step | Hyp | Ref | Expression | 
						
							| 0 |  | club | ⊢ lub | 
						
							| 1 |  | vp | ⊢ 𝑝 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑝 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑝 ) | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  ( Base ‘ 𝑝 ) | 
						
							| 8 |  | vx | ⊢ 𝑥 | 
						
							| 9 |  | vy | ⊢ 𝑦 | 
						
							| 10 | 3 | cv | ⊢ 𝑠 | 
						
							| 11 | 9 | cv | ⊢ 𝑦 | 
						
							| 12 |  | cple | ⊢ le | 
						
							| 13 | 5 12 | cfv | ⊢ ( le ‘ 𝑝 ) | 
						
							| 14 | 8 | cv | ⊢ 𝑥 | 
						
							| 15 | 11 14 13 | wbr | ⊢ 𝑦 ( le ‘ 𝑝 ) 𝑥 | 
						
							| 16 | 15 9 10 | wral | ⊢ ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 | 
						
							| 17 |  | vz | ⊢ 𝑧 | 
						
							| 18 | 17 | cv | ⊢ 𝑧 | 
						
							| 19 | 11 18 13 | wbr | ⊢ 𝑦 ( le ‘ 𝑝 ) 𝑧 | 
						
							| 20 | 19 9 10 | wral | ⊢ ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 | 
						
							| 21 | 14 18 13 | wbr | ⊢ 𝑥 ( le ‘ 𝑝 ) 𝑧 | 
						
							| 22 | 20 21 | wi | ⊢ ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) | 
						
							| 23 | 22 17 6 | wral | ⊢ ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) | 
						
							| 24 | 16 23 | wa | ⊢ ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) | 
						
							| 25 | 24 8 6 | crio | ⊢ ( ℩ 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) | 
						
							| 26 | 3 7 25 | cmpt | ⊢ ( 𝑠  ∈  𝒫  ( Base ‘ 𝑝 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) | 
						
							| 27 | 24 8 6 | wreu | ⊢ ∃! 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) | 
						
							| 28 | 27 3 | cab | ⊢ { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } | 
						
							| 29 | 26 28 | cres | ⊢ ( ( 𝑠  ∈  𝒫  ( Base ‘ 𝑝 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) | 
						
							| 30 | 1 2 29 | cmpt | ⊢ ( 𝑝  ∈  V  ↦  ( ( 𝑠  ∈  𝒫  ( Base ‘ 𝑝 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) ) | 
						
							| 31 | 0 30 | wceq | ⊢ lub  =  ( 𝑝  ∈  V  ↦  ( ( 𝑠  ∈  𝒫  ( Base ‘ 𝑝 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝑝 ) ( ∀ 𝑦  ∈  𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧  →  𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) ) |