Metamath Proof Explorer


Definition df-mamu

Description: The operator which multiplies an m x n matrix with an n x p matrix, see also the definition in Lang p. 504. Note that it is not generally possible to recover the dimensions from the matrix, since all n x 0 and all 0 x n matrices are represented by the empty set. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Assertion df-mamu maMul = ( 𝑟 ∈ V , 𝑜 ∈ V ↦ ( 1st ‘ ( 1st𝑜 ) ) / 𝑚 ( 2nd ‘ ( 1st𝑜 ) ) / 𝑛 ( 2nd𝑜 ) / 𝑝 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) ) ↦ ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmmul maMul
1 vr 𝑟
2 cvv V
3 vo 𝑜
4 c1st 1st
5 3 cv 𝑜
6 5 4 cfv ( 1st𝑜 )
7 6 4 cfv ( 1st ‘ ( 1st𝑜 ) )
8 vm 𝑚
9 c2nd 2nd
10 6 9 cfv ( 2nd ‘ ( 1st𝑜 ) )
11 vn 𝑛
12 5 9 cfv ( 2nd𝑜 )
13 vp 𝑝
14 vx 𝑥
15 cbs Base
16 1 cv 𝑟
17 16 15 cfv ( Base ‘ 𝑟 )
18 cmap m
19 8 cv 𝑚
20 11 cv 𝑛
21 19 20 cxp ( 𝑚 × 𝑛 )
22 17 21 18 co ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) )
23 vy 𝑦
24 13 cv 𝑝
25 20 24 cxp ( 𝑛 × 𝑝 )
26 17 25 18 co ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) )
27 vi 𝑖
28 vk 𝑘
29 cgsu Σg
30 vj 𝑗
31 27 cv 𝑖
32 14 cv 𝑥
33 30 cv 𝑗
34 31 33 32 co ( 𝑖 𝑥 𝑗 )
35 cmulr .r
36 16 35 cfv ( .r𝑟 )
37 23 cv 𝑦
38 28 cv 𝑘
39 33 38 37 co ( 𝑗 𝑦 𝑘 )
40 34 39 36 co ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) )
41 30 20 40 cmpt ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) )
42 16 41 29 co ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) )
43 27 28 19 24 42 cmpo ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) )
44 14 23 22 26 43 cmpo ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) ) ↦ ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) ) )
45 13 12 44 csb ( 2nd𝑜 ) / 𝑝 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) ) ↦ ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) ) )
46 11 10 45 csb ( 2nd ‘ ( 1st𝑜 ) ) / 𝑛 ( 2nd𝑜 ) / 𝑝 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) ) ↦ ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) ) )
47 8 7 46 csb ( 1st ‘ ( 1st𝑜 ) ) / 𝑚 ( 2nd ‘ ( 1st𝑜 ) ) / 𝑛 ( 2nd𝑜 ) / 𝑝 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) ) ↦ ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) ) )
48 1 3 2 2 47 cmpo ( 𝑟 ∈ V , 𝑜 ∈ V ↦ ( 1st ‘ ( 1st𝑜 ) ) / 𝑚 ( 2nd ‘ ( 1st𝑜 ) ) / 𝑛 ( 2nd𝑜 ) / 𝑝 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) ) ↦ ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) ) ) )
49 0 48 wceq maMul = ( 𝑟 ∈ V , 𝑜 ∈ V ↦ ( 1st ‘ ( 1st𝑜 ) ) / 𝑚 ( 2nd ‘ ( 1st𝑜 ) ) / 𝑛 ( 2nd𝑜 ) / 𝑝 ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑛 × 𝑝 ) ) ↦ ( 𝑖𝑚 , 𝑘𝑝 ↦ ( 𝑟 Σg ( 𝑗𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r𝑟 ) ( 𝑗 𝑦 𝑘 ) ) ) ) ) ) )