Step |
Hyp |
Ref |
Expression |
0 |
|
cmatrepV |
⊢ matRepV |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vm |
⊢ 𝑚 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑛 |
7 |
|
cmat |
⊢ Mat |
8 |
3
|
cv |
⊢ 𝑟 |
9 |
6 8 7
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
10 |
9 5
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
11 |
|
vv |
⊢ 𝑣 |
12 |
8 5
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
13 |
|
cmap |
⊢ ↑m |
14 |
12 6 13
|
co |
⊢ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) |
15 |
|
vk |
⊢ 𝑘 |
16 |
|
vi |
⊢ 𝑖 |
17 |
|
vj |
⊢ 𝑗 |
18 |
17
|
cv |
⊢ 𝑗 |
19 |
15
|
cv |
⊢ 𝑘 |
20 |
18 19
|
wceq |
⊢ 𝑗 = 𝑘 |
21 |
11
|
cv |
⊢ 𝑣 |
22 |
16
|
cv |
⊢ 𝑖 |
23 |
22 21
|
cfv |
⊢ ( 𝑣 ‘ 𝑖 ) |
24 |
4
|
cv |
⊢ 𝑚 |
25 |
22 18 24
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
26 |
20 23 25
|
cif |
⊢ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) |
27 |
16 17 6 6 26
|
cmpo |
⊢ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) |
28 |
15 6 27
|
cmpt |
⊢ ( 𝑘 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) |
29 |
4 11 10 14 28
|
cmpo |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
30 |
1 3 2 2 29
|
cmpo |
⊢ ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
31 |
0 30
|
wceq |
⊢ matRepV = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |