Metamath Proof Explorer


Definition df-marepv

Description: Function replacing a column of a matrix by a vector. (Contributed by AV, 9-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Assertion df-marepv matRepV = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmatrepV matRepV
1 vn 𝑛
2 cvv V
3 vr 𝑟
4 vm 𝑚
5 cbs Base
6 1 cv 𝑛
7 cmat Mat
8 3 cv 𝑟
9 6 8 7 co ( 𝑛 Mat 𝑟 )
10 9 5 cfv ( Base ‘ ( 𝑛 Mat 𝑟 ) )
11 vv 𝑣
12 8 5 cfv ( Base ‘ 𝑟 )
13 cmap m
14 12 6 13 co ( ( Base ‘ 𝑟 ) ↑m 𝑛 )
15 vk 𝑘
16 vi 𝑖
17 vj 𝑗
18 17 cv 𝑗
19 15 cv 𝑘
20 18 19 wceq 𝑗 = 𝑘
21 11 cv 𝑣
22 16 cv 𝑖
23 22 21 cfv ( 𝑣𝑖 )
24 4 cv 𝑚
25 22 18 24 co ( 𝑖 𝑚 𝑗 )
26 20 23 25 cif if ( 𝑗 = 𝑘 , ( 𝑣𝑖 ) , ( 𝑖 𝑚 𝑗 ) )
27 16 17 6 6 26 cmpo ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) )
28 15 6 27 cmpt ( 𝑘𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) )
29 4 11 10 14 28 cmpo ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) )
30 1 3 2 2 29 cmpo ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) )
31 0 30 wceq matRepV = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) )