Metamath Proof Explorer


Definition df-marrep

Description: Define the matrices whose k-th row is replaced by 0's and an arbitrary element of the underlying ring at the l-th column. (Contributed by AV, 12-Feb-2019)

Ref Expression
Assertion df-marrep matRRep = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑠 ∈ ( Base ‘ 𝑟 ) ↦ ( 𝑘𝑛 , 𝑙𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmarrep matRRep
1 vn 𝑛
2 cvv V
3 vr 𝑟
4 vm 𝑚
5 cbs Base
6 1 cv 𝑛
7 cmat Mat
8 3 cv 𝑟
9 6 8 7 co ( 𝑛 Mat 𝑟 )
10 9 5 cfv ( Base ‘ ( 𝑛 Mat 𝑟 ) )
11 vs 𝑠
12 8 5 cfv ( Base ‘ 𝑟 )
13 vk 𝑘
14 vl 𝑙
15 vi 𝑖
16 vj 𝑗
17 15 cv 𝑖
18 13 cv 𝑘
19 17 18 wceq 𝑖 = 𝑘
20 16 cv 𝑗
21 14 cv 𝑙
22 20 21 wceq 𝑗 = 𝑙
23 11 cv 𝑠
24 c0g 0g
25 8 24 cfv ( 0g𝑟 )
26 22 23 25 cif if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) )
27 4 cv 𝑚
28 17 20 27 co ( 𝑖 𝑚 𝑗 )
29 19 26 28 cif if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) )
30 15 16 6 6 29 cmpo ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) )
31 13 14 6 6 30 cmpo ( 𝑘𝑛 , 𝑙𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) )
32 4 11 10 12 31 cmpo ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑠 ∈ ( Base ‘ 𝑟 ) ↦ ( 𝑘𝑛 , 𝑙𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) )
33 1 3 2 2 32 cmpo ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑠 ∈ ( Base ‘ 𝑟 ) ↦ ( 𝑘𝑛 , 𝑙𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) )
34 0 33 wceq matRRep = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑠 ∈ ( Base ‘ 𝑟 ) ↦ ( 𝑘𝑛 , 𝑙𝑛 ↦ ( 𝑖𝑛 , 𝑗𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , ( 0g𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) )