Metamath Proof Explorer


Definition df-mat

Description: Define the algebra of n x n matrices over a ring r. (Contributed by Stefan O'Rear, 31-Aug-2015)

Ref Expression
Assertion df-mat Mat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet ⟨ ( .r ‘ ndx ) , ( 𝑟 maMul ⟨ 𝑛 , 𝑛 , 𝑛 ⟩ ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmat Mat
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 3 cv 𝑟
6 cfrlm freeLMod
7 1 cv 𝑛
8 7 7 cxp ( 𝑛 × 𝑛 )
9 5 8 6 co ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) )
10 csts sSet
11 cmulr .r
12 cnx ndx
13 12 11 cfv ( .r ‘ ndx )
14 cmmul maMul
15 7 7 7 cotp 𝑛 , 𝑛 , 𝑛
16 5 15 14 co ( 𝑟 maMul ⟨ 𝑛 , 𝑛 , 𝑛 ⟩ )
17 13 16 cop ⟨ ( .r ‘ ndx ) , ( 𝑟 maMul ⟨ 𝑛 , 𝑛 , 𝑛 ⟩ ) ⟩
18 9 17 10 co ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet ⟨ ( .r ‘ ndx ) , ( 𝑟 maMul ⟨ 𝑛 , 𝑛 , 𝑛 ⟩ ) ⟩ )
19 1 3 2 4 18 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet ⟨ ( .r ‘ ndx ) , ( 𝑟 maMul ⟨ 𝑛 , 𝑛 , 𝑛 ⟩ ) ⟩ ) )
20 0 19 wceq Mat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet ⟨ ( .r ‘ ndx ) , ( 𝑟 maMul ⟨ 𝑛 , 𝑛 , 𝑛 ⟩ ) ⟩ ) )