| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmat2pmat |
⊢ matToPolyMat |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cfn |
⊢ Fin |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cvv |
⊢ V |
| 5 |
|
vm |
⊢ 𝑚 |
| 6 |
|
cbs |
⊢ Base |
| 7 |
1
|
cv |
⊢ 𝑛 |
| 8 |
|
cmat |
⊢ Mat |
| 9 |
3
|
cv |
⊢ 𝑟 |
| 10 |
7 9 8
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 11 |
10 6
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
| 12 |
|
vx |
⊢ 𝑥 |
| 13 |
|
vy |
⊢ 𝑦 |
| 14 |
|
cascl |
⊢ algSc |
| 15 |
|
cpl1 |
⊢ Poly1 |
| 16 |
9 15
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
| 17 |
16 14
|
cfv |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) |
| 18 |
12
|
cv |
⊢ 𝑥 |
| 19 |
5
|
cv |
⊢ 𝑚 |
| 20 |
13
|
cv |
⊢ 𝑦 |
| 21 |
18 20 19
|
co |
⊢ ( 𝑥 𝑚 𝑦 ) |
| 22 |
21 17
|
cfv |
⊢ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) |
| 23 |
12 13 7 7 22
|
cmpo |
⊢ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) |
| 24 |
5 11 23
|
cmpt |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) |
| 25 |
1 3 2 4 24
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |
| 26 |
0 25
|
wceq |
⊢ matToPolyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |