Metamath Proof Explorer


Definition df-mat2pmat

Description: Transformation of a matrix (over a ring) into a matrix over the corresponding polynomial ring. (Contributed by AV, 31-Jul-2019)

Ref Expression
Assertion df-mat2pmat matToPolyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmat2pmat matToPolyMat
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 vm 𝑚
6 cbs Base
7 1 cv 𝑛
8 cmat Mat
9 3 cv 𝑟
10 7 9 8 co ( 𝑛 Mat 𝑟 )
11 10 6 cfv ( Base ‘ ( 𝑛 Mat 𝑟 ) )
12 vx 𝑥
13 vy 𝑦
14 cascl algSc
15 cpl1 Poly1
16 9 15 cfv ( Poly1𝑟 )
17 16 14 cfv ( algSc ‘ ( Poly1𝑟 ) )
18 12 cv 𝑥
19 5 cv 𝑚
20 13 cv 𝑦
21 18 20 19 co ( 𝑥 𝑚 𝑦 )
22 21 17 cfv ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) )
23 12 13 7 7 22 cmpo ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) )
24 5 11 23 cmpt ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) )
25 1 3 2 4 24 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )
26 0 25 wceq matToPolyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )