Metamath Proof Explorer


Definition df-mbf

Description: Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl ) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion df-mbf MblFn = { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmbf MblFn
1 vf 𝑓
2 cc
3 cpm pm
4 cr
5 2 4 3 co ( ℂ ↑pm ℝ )
6 vx 𝑥
7 cioo (,)
8 7 crn ran (,)
9 cre
10 1 cv 𝑓
11 9 10 ccom ( ℜ ∘ 𝑓 )
12 11 ccnv ( ℜ ∘ 𝑓 )
13 6 cv 𝑥
14 12 13 cima ( ( ℜ ∘ 𝑓 ) “ 𝑥 )
15 cvol vol
16 15 cdm dom vol
17 14 16 wcel ( ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol
18 cim
19 18 10 ccom ( ℑ ∘ 𝑓 )
20 19 ccnv ( ℑ ∘ 𝑓 )
21 20 13 cima ( ( ℑ ∘ 𝑓 ) “ 𝑥 )
22 21 16 wcel ( ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol
23 17 22 wa ( ( ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol )
24 23 6 8 wral 𝑥 ∈ ran (,) ( ( ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol )
25 24 1 5 crab { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) }
26 0 25 wceq MblFn = { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) }