Metamath Proof Explorer


Definition df-md

Description: Define the modular pair relation (on the Hilbert lattice). Definition 1.1 of MaedaMaeda p. 1, who use the notation (x,y)M for "the ordered pair is a modular pair." See mdbr for membership relation. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion df-md 𝑀 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑧𝑦 → ( ( 𝑧 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ( 𝑥𝑦 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmd 𝑀
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 cch C
5 3 4 wcel 𝑥C
6 2 cv 𝑦
7 6 4 wcel 𝑦C
8 5 7 wa ( 𝑥C𝑦C )
9 vz 𝑧
10 9 cv 𝑧
11 10 6 wss 𝑧𝑦
12 chj
13 10 3 12 co ( 𝑧 𝑥 )
14 13 6 cin ( ( 𝑧 𝑥 ) ∩ 𝑦 )
15 3 6 cin ( 𝑥𝑦 )
16 10 15 12 co ( 𝑧 ( 𝑥𝑦 ) )
17 14 16 wceq ( ( 𝑧 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ( 𝑥𝑦 ) )
18 11 17 wi ( 𝑧𝑦 → ( ( 𝑧 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ( 𝑥𝑦 ) ) )
19 18 9 4 wral 𝑧C ( 𝑧𝑦 → ( ( 𝑧 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ( 𝑥𝑦 ) ) )
20 8 19 wa ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑧𝑦 → ( ( 𝑧 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ( 𝑥𝑦 ) ) ) )
21 20 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑧𝑦 → ( ( 𝑧 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ( 𝑥𝑦 ) ) ) ) }
22 0 21 wceq 𝑀 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑧𝑦 → ( ( 𝑧 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ( 𝑥𝑦 ) ) ) ) }