| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmdat |
⊢ maDet |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
vm |
⊢ 𝑚 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑛 |
| 7 |
|
cmat |
⊢ Mat |
| 8 |
3
|
cv |
⊢ 𝑟 |
| 9 |
6 8 7
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 10 |
9 5
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
| 11 |
|
cgsu |
⊢ Σg |
| 12 |
|
vp |
⊢ 𝑝 |
| 13 |
|
csymg |
⊢ SymGrp |
| 14 |
6 13
|
cfv |
⊢ ( SymGrp ‘ 𝑛 ) |
| 15 |
14 5
|
cfv |
⊢ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) |
| 16 |
|
czrh |
⊢ ℤRHom |
| 17 |
8 16
|
cfv |
⊢ ( ℤRHom ‘ 𝑟 ) |
| 18 |
|
cpsgn |
⊢ pmSgn |
| 19 |
6 18
|
cfv |
⊢ ( pmSgn ‘ 𝑛 ) |
| 20 |
17 19
|
ccom |
⊢ ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) |
| 21 |
12
|
cv |
⊢ 𝑝 |
| 22 |
21 20
|
cfv |
⊢ ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) |
| 23 |
|
cmulr |
⊢ .r |
| 24 |
8 23
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
| 25 |
|
cmgp |
⊢ mulGrp |
| 26 |
8 25
|
cfv |
⊢ ( mulGrp ‘ 𝑟 ) |
| 27 |
|
vx |
⊢ 𝑥 |
| 28 |
27
|
cv |
⊢ 𝑥 |
| 29 |
28 21
|
cfv |
⊢ ( 𝑝 ‘ 𝑥 ) |
| 30 |
4
|
cv |
⊢ 𝑚 |
| 31 |
29 28 30
|
co |
⊢ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) |
| 32 |
27 6 31
|
cmpt |
⊢ ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) |
| 33 |
26 32 11
|
co |
⊢ ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) |
| 34 |
22 33 24
|
co |
⊢ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) |
| 35 |
12 15 34
|
cmpt |
⊢ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) |
| 36 |
8 35 11
|
co |
⊢ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) |
| 37 |
4 10 36
|
cmpt |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| 38 |
1 3 2 2 37
|
cmpo |
⊢ ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 39 |
0 38
|
wceq |
⊢ maDet = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |