Metamath Proof Explorer


Definition df-meet

Description: Define poset meet. (Contributed by NM, 12-Sep-2011) (Revised by NM, 8-Sep-2018)

Ref Expression
Assertion df-meet meet = ( 𝑝 ∈ V ↦ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmee meet
1 vp 𝑝
2 cvv V
3 vx 𝑥
4 vy 𝑦
5 vz 𝑧
6 3 cv 𝑥
7 4 cv 𝑦
8 6 7 cpr { 𝑥 , 𝑦 }
9 cglb glb
10 1 cv 𝑝
11 10 9 cfv ( glb ‘ 𝑝 )
12 5 cv 𝑧
13 8 12 11 wbr { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧
14 13 3 4 5 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧 }
15 1 2 14 cmpt ( 𝑝 ∈ V ↦ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧 } )
16 0 15 wceq meet = ( 𝑝 ∈ V ↦ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧 } )