Metamath Proof Explorer


Definition df-membparts

Description: Define the class of member partition relations on their domain quotients. (Contributed by Peter Mazsa, 26-Jun-2021)

Ref Expression
Assertion df-membparts MembParts = { 𝑎 ∣ ( E ↾ 𝑎 ) Parts 𝑎 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmembparts MembParts
1 va 𝑎
2 cep E
3 2 ccnv E
4 1 cv 𝑎
5 3 4 cres ( E ↾ 𝑎 )
6 cparts Parts
7 5 4 6 wbr ( E ↾ 𝑎 ) Parts 𝑎
8 7 1 cab { 𝑎 ∣ ( E ↾ 𝑎 ) Parts 𝑎 }
9 0 8 wceq MembParts = { 𝑎 ∣ ( E ↾ 𝑎 ) Parts 𝑎 }