Metamath Proof Explorer
Description: Define the class of member partition relations on their domain quotients.
(Contributed by Peter Mazsa, 26-Jun-2021)
|
|
Ref |
Expression |
|
Assertion |
df-membparts |
⊢ MembParts = { 𝑎 ∣ ( ◡ E ↾ 𝑎 ) Parts 𝑎 } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cmembparts |
⊢ MembParts |
1 |
|
va |
⊢ 𝑎 |
2 |
|
cep |
⊢ E |
3 |
2
|
ccnv |
⊢ ◡ E |
4 |
1
|
cv |
⊢ 𝑎 |
5 |
3 4
|
cres |
⊢ ( ◡ E ↾ 𝑎 ) |
6 |
|
cparts |
⊢ Parts |
7 |
5 4 6
|
wbr |
⊢ ( ◡ E ↾ 𝑎 ) Parts 𝑎 |
8 |
7 1
|
cab |
⊢ { 𝑎 ∣ ( ◡ E ↾ 𝑎 ) Parts 𝑎 } |
9 |
0 8
|
wceq |
⊢ MembParts = { 𝑎 ∣ ( ◡ E ↾ 𝑎 ) Parts 𝑎 } |