| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmet | ⊢ Met | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vd | ⊢ 𝑑 | 
						
							| 4 |  | cr | ⊢ ℝ | 
						
							| 5 |  | cmap | ⊢  ↑m | 
						
							| 6 | 1 | cv | ⊢ 𝑥 | 
						
							| 7 | 6 6 | cxp | ⊢ ( 𝑥  ×  𝑥 ) | 
						
							| 8 | 4 7 5 | co | ⊢ ( ℝ  ↑m  ( 𝑥  ×  𝑥 ) ) | 
						
							| 9 |  | vy | ⊢ 𝑦 | 
						
							| 10 |  | vz | ⊢ 𝑧 | 
						
							| 11 | 9 | cv | ⊢ 𝑦 | 
						
							| 12 | 3 | cv | ⊢ 𝑑 | 
						
							| 13 | 10 | cv | ⊢ 𝑧 | 
						
							| 14 | 11 13 12 | co | ⊢ ( 𝑦 𝑑 𝑧 ) | 
						
							| 15 |  | cc0 | ⊢ 0 | 
						
							| 16 | 14 15 | wceq | ⊢ ( 𝑦 𝑑 𝑧 )  =  0 | 
						
							| 17 | 11 13 | wceq | ⊢ 𝑦  =  𝑧 | 
						
							| 18 | 16 17 | wb | ⊢ ( ( 𝑦 𝑑 𝑧 )  =  0  ↔  𝑦  =  𝑧 ) | 
						
							| 19 |  | vw | ⊢ 𝑤 | 
						
							| 20 |  | cle | ⊢  ≤ | 
						
							| 21 | 19 | cv | ⊢ 𝑤 | 
						
							| 22 | 21 11 12 | co | ⊢ ( 𝑤 𝑑 𝑦 ) | 
						
							| 23 |  | caddc | ⊢  + | 
						
							| 24 | 21 13 12 | co | ⊢ ( 𝑤 𝑑 𝑧 ) | 
						
							| 25 | 22 24 23 | co | ⊢ ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) | 
						
							| 26 | 14 25 20 | wbr | ⊢ ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) | 
						
							| 27 | 26 19 6 | wral | ⊢ ∀ 𝑤  ∈  𝑥 ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) | 
						
							| 28 | 18 27 | wa | ⊢ ( ( ( 𝑦 𝑑 𝑧 )  =  0  ↔  𝑦  =  𝑧 )  ∧  ∀ 𝑤  ∈  𝑥 ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) ) | 
						
							| 29 | 28 10 6 | wral | ⊢ ∀ 𝑧  ∈  𝑥 ( ( ( 𝑦 𝑑 𝑧 )  =  0  ↔  𝑦  =  𝑧 )  ∧  ∀ 𝑤  ∈  𝑥 ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) ) | 
						
							| 30 | 29 9 6 | wral | ⊢ ∀ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ( ( ( 𝑦 𝑑 𝑧 )  =  0  ↔  𝑦  =  𝑧 )  ∧  ∀ 𝑤  ∈  𝑥 ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) ) | 
						
							| 31 | 30 3 8 | crab | ⊢ { 𝑑  ∈  ( ℝ  ↑m  ( 𝑥  ×  𝑥 ) )  ∣  ∀ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ( ( ( 𝑦 𝑑 𝑧 )  =  0  ↔  𝑦  =  𝑧 )  ∧  ∀ 𝑤  ∈  𝑥 ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) ) } | 
						
							| 32 | 1 2 31 | cmpt | ⊢ ( 𝑥  ∈  V  ↦  { 𝑑  ∈  ( ℝ  ↑m  ( 𝑥  ×  𝑥 ) )  ∣  ∀ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ( ( ( 𝑦 𝑑 𝑧 )  =  0  ↔  𝑦  =  𝑧 )  ∧  ∀ 𝑤  ∈  𝑥 ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) ) } ) | 
						
							| 33 | 0 32 | wceq | ⊢ Met  =  ( 𝑥  ∈  V  ↦  { 𝑑  ∈  ( ℝ  ↑m  ( 𝑥  ×  𝑥 ) )  ∣  ∀ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ( ( ( 𝑦 𝑑 𝑧 )  =  0  ↔  𝑦  =  𝑧 )  ∧  ∀ 𝑤  ∈  𝑥 ( 𝑦 𝑑 𝑧 )  ≤  ( ( 𝑤 𝑑 𝑦 )  +  ( 𝑤 𝑑 𝑧 ) ) ) } ) |