Step |
Hyp |
Ref |
Expression |
0 |
|
cmet |
⊢ Met |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
cr |
⊢ ℝ |
5 |
|
cmap |
⊢ ↑m |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
6 6
|
cxp |
⊢ ( 𝑥 × 𝑥 ) |
8 |
4 7 5
|
co |
⊢ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) |
9 |
|
vy |
⊢ 𝑦 |
10 |
|
vz |
⊢ 𝑧 |
11 |
9
|
cv |
⊢ 𝑦 |
12 |
3
|
cv |
⊢ 𝑑 |
13 |
10
|
cv |
⊢ 𝑧 |
14 |
11 13 12
|
co |
⊢ ( 𝑦 𝑑 𝑧 ) |
15 |
|
cc0 |
⊢ 0 |
16 |
14 15
|
wceq |
⊢ ( 𝑦 𝑑 𝑧 ) = 0 |
17 |
11 13
|
wceq |
⊢ 𝑦 = 𝑧 |
18 |
16 17
|
wb |
⊢ ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) |
19 |
|
vw |
⊢ 𝑤 |
20 |
|
cle |
⊢ ≤ |
21 |
19
|
cv |
⊢ 𝑤 |
22 |
21 11 12
|
co |
⊢ ( 𝑤 𝑑 𝑦 ) |
23 |
|
caddc |
⊢ + |
24 |
21 13 12
|
co |
⊢ ( 𝑤 𝑑 𝑧 ) |
25 |
22 24 23
|
co |
⊢ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) |
26 |
14 25 20
|
wbr |
⊢ ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) |
27 |
26 19 6
|
wral |
⊢ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) |
28 |
18 27
|
wa |
⊢ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) |
29 |
28 10 6
|
wral |
⊢ ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) |
30 |
29 9 6
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) |
31 |
30 3 8
|
crab |
⊢ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } ) |
33 |
0 32
|
wceq |
⊢ Met = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } ) |