Metamath Proof Explorer


Definition df-metu

Description: Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion df-metu metUnif = ( 𝑑 ran PsMet ↦ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmetu metUnif
1 vd 𝑑
2 cpsmet PsMet
3 2 crn ran PsMet
4 3 cuni ran PsMet
5 1 cv 𝑑
6 5 cdm dom 𝑑
7 6 cdm dom dom 𝑑
8 7 7 cxp ( dom dom 𝑑 × dom dom 𝑑 )
9 cfg filGen
10 va 𝑎
11 crp +
12 5 ccnv 𝑑
13 cc0 0
14 cico [,)
15 10 cv 𝑎
16 13 15 14 co ( 0 [,) 𝑎 )
17 12 16 cima ( 𝑑 “ ( 0 [,) 𝑎 ) )
18 10 11 17 cmpt ( 𝑎 ∈ ℝ+ ↦ ( 𝑑 “ ( 0 [,) 𝑎 ) ) )
19 18 crn ran ( 𝑎 ∈ ℝ+ ↦ ( 𝑑 “ ( 0 [,) 𝑎 ) ) )
20 8 19 9 co ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( 𝑑 “ ( 0 [,) 𝑎 ) ) ) )
21 1 4 20 cmpt ( 𝑑 ran PsMet ↦ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) )
22 0 21 wceq metUnif = ( 𝑑 ran PsMet ↦ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) )