| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmetu | ⊢ metUnif | 
						
							| 1 |  | vd | ⊢ 𝑑 | 
						
							| 2 |  | cpsmet | ⊢ PsMet | 
						
							| 3 | 2 | crn | ⊢ ran  PsMet | 
						
							| 4 | 3 | cuni | ⊢ ∪  ran  PsMet | 
						
							| 5 | 1 | cv | ⊢ 𝑑 | 
						
							| 6 | 5 | cdm | ⊢ dom  𝑑 | 
						
							| 7 | 6 | cdm | ⊢ dom  dom  𝑑 | 
						
							| 8 | 7 7 | cxp | ⊢ ( dom  dom  𝑑  ×  dom  dom  𝑑 ) | 
						
							| 9 |  | cfg | ⊢ filGen | 
						
							| 10 |  | va | ⊢ 𝑎 | 
						
							| 11 |  | crp | ⊢ ℝ+ | 
						
							| 12 | 5 | ccnv | ⊢ ◡ 𝑑 | 
						
							| 13 |  | cc0 | ⊢ 0 | 
						
							| 14 |  | cico | ⊢ [,) | 
						
							| 15 | 10 | cv | ⊢ 𝑎 | 
						
							| 16 | 13 15 14 | co | ⊢ ( 0 [,) 𝑎 ) | 
						
							| 17 | 12 16 | cima | ⊢ ( ◡ 𝑑  “  ( 0 [,) 𝑎 ) ) | 
						
							| 18 | 10 11 17 | cmpt | ⊢ ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝑑  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 19 | 18 | crn | ⊢ ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝑑  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 20 | 8 19 9 | co | ⊢ ( ( dom  dom  𝑑  ×  dom  dom  𝑑 ) filGen ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝑑  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 21 | 1 4 20 | cmpt | ⊢ ( 𝑑  ∈  ∪  ran  PsMet  ↦  ( ( dom  dom  𝑑  ×  dom  dom  𝑑 ) filGen ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝑑  “  ( 0 [,) 𝑎 ) ) ) ) ) | 
						
							| 22 | 0 21 | wceq | ⊢ metUnif  =  ( 𝑑  ∈  ∪  ran  PsMet  ↦  ( ( dom  dom  𝑑  ×  dom  dom  𝑑 ) filGen ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝑑  “  ( 0 [,) 𝑎 ) ) ) ) ) |