| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmhm |
⊢ MndHom |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cmnd |
⊢ Mnd |
| 3 |
|
vt |
⊢ 𝑡 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
3
|
cv |
⊢ 𝑡 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
| 8 |
|
cmap |
⊢ ↑m |
| 9 |
1
|
cv |
⊢ 𝑠 |
| 10 |
9 5
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
| 11 |
7 10 8
|
co |
⊢ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) |
| 12 |
|
vx |
⊢ 𝑥 |
| 13 |
|
vy |
⊢ 𝑦 |
| 14 |
4
|
cv |
⊢ 𝑓 |
| 15 |
12
|
cv |
⊢ 𝑥 |
| 16 |
|
cplusg |
⊢ +g |
| 17 |
9 16
|
cfv |
⊢ ( +g ‘ 𝑠 ) |
| 18 |
13
|
cv |
⊢ 𝑦 |
| 19 |
15 18 17
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
| 20 |
19 14
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) |
| 21 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 22 |
6 16
|
cfv |
⊢ ( +g ‘ 𝑡 ) |
| 23 |
18 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 24 |
21 23 22
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 25 |
20 24
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 26 |
25 13 10
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 27 |
26 12 10
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 28 |
|
c0g |
⊢ 0g |
| 29 |
9 28
|
cfv |
⊢ ( 0g ‘ 𝑠 ) |
| 30 |
29 14
|
cfv |
⊢ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) |
| 31 |
6 28
|
cfv |
⊢ ( 0g ‘ 𝑡 ) |
| 32 |
30 31
|
wceq |
⊢ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) |
| 33 |
27 32
|
wa |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) |
| 34 |
33 4 11
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } |
| 35 |
1 3 2 2 34
|
cmpo |
⊢ ( 𝑠 ∈ Mnd , 𝑡 ∈ Mnd ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } ) |
| 36 |
0 35
|
wceq |
⊢ MndHom = ( 𝑠 ∈ Mnd , 𝑡 ∈ Mnd ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } ) |