Step |
Hyp |
Ref |
Expression |
0 |
|
cmhm |
⊢ MndHom |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cmnd |
⊢ Mnd |
3 |
|
vt |
⊢ 𝑡 |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
cbs |
⊢ Base |
6 |
3
|
cv |
⊢ 𝑡 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
8 |
|
cmap |
⊢ ↑m |
9 |
1
|
cv |
⊢ 𝑠 |
10 |
9 5
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
11 |
7 10 8
|
co |
⊢ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) |
12 |
|
vx |
⊢ 𝑥 |
13 |
|
vy |
⊢ 𝑦 |
14 |
4
|
cv |
⊢ 𝑓 |
15 |
12
|
cv |
⊢ 𝑥 |
16 |
|
cplusg |
⊢ +g |
17 |
9 16
|
cfv |
⊢ ( +g ‘ 𝑠 ) |
18 |
13
|
cv |
⊢ 𝑦 |
19 |
15 18 17
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
20 |
19 14
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) |
21 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
22 |
6 16
|
cfv |
⊢ ( +g ‘ 𝑡 ) |
23 |
18 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
24 |
21 23 22
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
25 |
20 24
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
26 |
25 13 10
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
27 |
26 12 10
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
28 |
|
c0g |
⊢ 0g |
29 |
9 28
|
cfv |
⊢ ( 0g ‘ 𝑠 ) |
30 |
29 14
|
cfv |
⊢ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) |
31 |
6 28
|
cfv |
⊢ ( 0g ‘ 𝑡 ) |
32 |
30 31
|
wceq |
⊢ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) |
33 |
27 32
|
wa |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) |
34 |
33 4 11
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } |
35 |
1 3 2 2 34
|
cmpo |
⊢ ( 𝑠 ∈ Mnd , 𝑡 ∈ Mnd ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } ) |
36 |
0 35
|
wceq |
⊢ MndHom = ( 𝑠 ∈ Mnd , 𝑡 ∈ Mnd ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } ) |