| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmid |
⊢ midG |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 7 |
|
vb |
⊢ 𝑏 |
| 8 |
|
vm |
⊢ 𝑚 |
| 9 |
7
|
cv |
⊢ 𝑏 |
| 10 |
|
cmir |
⊢ pInvG |
| 11 |
5 10
|
cfv |
⊢ ( pInvG ‘ 𝑔 ) |
| 12 |
8
|
cv |
⊢ 𝑚 |
| 13 |
12 11
|
cfv |
⊢ ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) |
| 14 |
3
|
cv |
⊢ 𝑎 |
| 15 |
14 13
|
cfv |
⊢ ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) |
| 16 |
9 15
|
wceq |
⊢ 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) |
| 17 |
16 8 6
|
crio |
⊢ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) |
| 18 |
3 7 6 6 17
|
cmpo |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) |
| 19 |
1 2 18
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |
| 20 |
0 19
|
wceq |
⊢ midG = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |