Step |
Hyp |
Ref |
Expression |
0 |
|
cminmar1 |
⊢ minMatR1 |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vm |
⊢ 𝑚 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑛 |
7 |
|
cmat |
⊢ Mat |
8 |
3
|
cv |
⊢ 𝑟 |
9 |
6 8 7
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
10 |
9 5
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
11 |
|
vk |
⊢ 𝑘 |
12 |
|
vl |
⊢ 𝑙 |
13 |
|
vi |
⊢ 𝑖 |
14 |
|
vj |
⊢ 𝑗 |
15 |
13
|
cv |
⊢ 𝑖 |
16 |
11
|
cv |
⊢ 𝑘 |
17 |
15 16
|
wceq |
⊢ 𝑖 = 𝑘 |
18 |
14
|
cv |
⊢ 𝑗 |
19 |
12
|
cv |
⊢ 𝑙 |
20 |
18 19
|
wceq |
⊢ 𝑗 = 𝑙 |
21 |
|
cur |
⊢ 1r |
22 |
8 21
|
cfv |
⊢ ( 1r ‘ 𝑟 ) |
23 |
|
c0g |
⊢ 0g |
24 |
8 23
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
25 |
20 22 24
|
cif |
⊢ if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) |
26 |
4
|
cv |
⊢ 𝑚 |
27 |
15 18 26
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
28 |
17 25 27
|
cif |
⊢ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) |
29 |
13 14 6 6 28
|
cmpo |
⊢ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) |
30 |
11 12 6 6 29
|
cmpo |
⊢ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) |
31 |
4 10 30
|
cmpt |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
32 |
1 3 2 2 31
|
cmpo |
⊢ ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
33 |
0 32
|
wceq |
⊢ minMatR1 = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |