| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cminusg |
⊢ invg |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 7 |
|
vw |
⊢ 𝑤 |
| 8 |
7
|
cv |
⊢ 𝑤 |
| 9 |
|
cplusg |
⊢ +g |
| 10 |
5 9
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
| 11 |
3
|
cv |
⊢ 𝑥 |
| 12 |
8 11 10
|
co |
⊢ ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) |
| 13 |
|
c0g |
⊢ 0g |
| 14 |
5 13
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
| 15 |
12 14
|
wceq |
⊢ ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) |
| 16 |
15 7 6
|
crio |
⊢ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) |
| 17 |
3 6 16
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) |
| 18 |
1 2 17
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) |
| 19 |
0 18
|
wceq |
⊢ invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) |