Step |
Hyp |
Ref |
Expression |
0 |
|
cminusg |
⊢ invg |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
7 |
|
vw |
⊢ 𝑤 |
8 |
7
|
cv |
⊢ 𝑤 |
9 |
|
cplusg |
⊢ +g |
10 |
5 9
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
11 |
3
|
cv |
⊢ 𝑥 |
12 |
8 11 10
|
co |
⊢ ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) |
13 |
|
c0g |
⊢ 0g |
14 |
5 13
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
15 |
12 14
|
wceq |
⊢ ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) |
16 |
15 7 6
|
crio |
⊢ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) |
17 |
3 6 16
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) |
18 |
1 2 17
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) |
19 |
0 18
|
wceq |
⊢ invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ) ) ) |