Metamath Proof Explorer


Definition df-minusg

Description: Define inverse of group element. (Contributed by NM, 24-Aug-2011)

Ref Expression
Assertion df-minusg invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g𝑔 ) 𝑥 ) = ( 0g𝑔 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cminusg invg
1 vg 𝑔
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑔
6 5 4 cfv ( Base ‘ 𝑔 )
7 vw 𝑤
8 7 cv 𝑤
9 cplusg +g
10 5 9 cfv ( +g𝑔 )
11 3 cv 𝑥
12 8 11 10 co ( 𝑤 ( +g𝑔 ) 𝑥 )
13 c0g 0g
14 5 13 cfv ( 0g𝑔 )
15 12 14 wceq ( 𝑤 ( +g𝑔 ) 𝑥 ) = ( 0g𝑔 )
16 15 7 6 crio ( 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g𝑔 ) 𝑥 ) = ( 0g𝑔 ) )
17 3 6 16 cmpt ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g𝑔 ) 𝑥 ) = ( 0g𝑔 ) ) )
18 1 2 17 cmpt ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g𝑔 ) 𝑥 ) = ( 0g𝑔 ) ) ) )
19 0 18 wceq invg = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑤 ∈ ( Base ‘ 𝑔 ) ( 𝑤 ( +g𝑔 ) 𝑥 ) = ( 0g𝑔 ) ) ) )