Metamath Proof Explorer


Definition df-mnd

Description: Amonoid is a semigroup, which has a two-sided neutral element. Definition 2 in BourbakiAlg1 p. 12. In other words (according to the definition in Lang p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl ), whose operation is associative (see mndass ) and has a two-sided neutral element (see mndid ), see also ismnd . (Contributed by Mario Carneiro, 6-Jan-2015) (Revised by AV, 1-Feb-2020)

Ref Expression
Assertion df-mnd Mnd = { 𝑔 ∈ Smgrp ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g𝑔 ) / 𝑝 ]𝑒𝑏𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnd Mnd
1 vg 𝑔
2 csgrp Smgrp
3 cbs Base
4 1 cv 𝑔
5 4 3 cfv ( Base ‘ 𝑔 )
6 vb 𝑏
7 cplusg +g
8 4 7 cfv ( +g𝑔 )
9 vp 𝑝
10 ve 𝑒
11 6 cv 𝑏
12 vx 𝑥
13 10 cv 𝑒
14 9 cv 𝑝
15 12 cv 𝑥
16 13 15 14 co ( 𝑒 𝑝 𝑥 )
17 16 15 wceq ( 𝑒 𝑝 𝑥 ) = 𝑥
18 15 13 14 co ( 𝑥 𝑝 𝑒 )
19 18 15 wceq ( 𝑥 𝑝 𝑒 ) = 𝑥
20 17 19 wa ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 )
21 20 12 11 wral 𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 )
22 21 10 11 wrex 𝑒𝑏𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 )
23 22 9 8 wsbc [ ( +g𝑔 ) / 𝑝 ]𝑒𝑏𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 )
24 23 6 5 wsbc [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g𝑔 ) / 𝑝 ]𝑒𝑏𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 )
25 24 1 2 crab { 𝑔 ∈ Smgrp ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g𝑔 ) / 𝑝 ]𝑒𝑏𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 ) }
26 0 25 wceq Mnd = { 𝑔 ∈ Smgrp ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g𝑔 ) / 𝑝 ]𝑒𝑏𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 ) }