Metamath Proof Explorer


Definition df-mod

Description: Define the modulo (remainder) operation. See modval for its value. For example, ( 5 mod 3 ) = 2 and ( -u 7 mod 2 ) = 1 ( ex-mod ). (Contributed by NM, 10-Nov-2008)

Ref Expression
Assertion df-mod mod = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ+ ↦ ( 𝑥 − ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmo mod
1 vx 𝑥
2 cr
3 vy 𝑦
4 crp +
5 1 cv 𝑥
6 cmin
7 3 cv 𝑦
8 cmul ·
9 cfl
10 cdiv /
11 5 7 10 co ( 𝑥 / 𝑦 )
12 11 9 cfv ( ⌊ ‘ ( 𝑥 / 𝑦 ) )
13 7 12 8 co ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) )
14 5 13 6 co ( 𝑥 − ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) )
15 1 3 2 4 14 cmpo ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ+ ↦ ( 𝑥 − ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) ) )
16 0 15 wceq mod = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ+ ↦ ( 𝑥 − ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) ) )