Metamath Proof Explorer


Definition df-mon

Description: Function returning the monomorphisms of the category c . JFM CAT_1 def. 10. (Contributed by FL, 5-Dec-2007) (Revised by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-mon Mono = ( 𝑐 ∈ Cat ↦ ( Base ‘ 𝑐 ) / 𝑏 ( Hom ‘ 𝑐 ) / ( 𝑥𝑏 , 𝑦𝑏 ↦ { 𝑓 ∈ ( 𝑥 𝑦 ) ∣ ∀ 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmon Mono
1 vc 𝑐
2 ccat Cat
3 cbs Base
4 1 cv 𝑐
5 4 3 cfv ( Base ‘ 𝑐 )
6 vb 𝑏
7 chom Hom
8 4 7 cfv ( Hom ‘ 𝑐 )
9 vh
10 vx 𝑥
11 6 cv 𝑏
12 vy 𝑦
13 vf 𝑓
14 10 cv 𝑥
15 9 cv
16 12 cv 𝑦
17 14 16 15 co ( 𝑥 𝑦 )
18 vz 𝑧
19 vg 𝑔
20 18 cv 𝑧
21 20 14 15 co ( 𝑧 𝑥 )
22 13 cv 𝑓
23 20 14 cop 𝑧 , 𝑥
24 cco comp
25 4 24 cfv ( comp ‘ 𝑐 )
26 23 16 25 co ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 )
27 19 cv 𝑔
28 22 27 26 co ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 )
29 19 21 28 cmpt ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) )
30 29 ccnv ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) )
31 30 wfun Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) )
32 31 18 11 wral 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) )
33 32 13 17 crab { 𝑓 ∈ ( 𝑥 𝑦 ) ∣ ∀ 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) }
34 10 12 11 11 33 cmpo ( 𝑥𝑏 , 𝑦𝑏 ↦ { 𝑓 ∈ ( 𝑥 𝑦 ) ∣ ∀ 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } )
35 9 8 34 csb ( Hom ‘ 𝑐 ) / ( 𝑥𝑏 , 𝑦𝑏 ↦ { 𝑓 ∈ ( 𝑥 𝑦 ) ∣ ∀ 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } )
36 6 5 35 csb ( Base ‘ 𝑐 ) / 𝑏 ( Hom ‘ 𝑐 ) / ( 𝑥𝑏 , 𝑦𝑏 ↦ { 𝑓 ∈ ( 𝑥 𝑦 ) ∣ ∀ 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } )
37 1 2 36 cmpt ( 𝑐 ∈ Cat ↦ ( Base ‘ 𝑐 ) / 𝑏 ( Hom ‘ 𝑐 ) / ( 𝑥𝑏 , 𝑦𝑏 ↦ { 𝑓 ∈ ( 𝑥 𝑦 ) ∣ ∀ 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) )
38 0 37 wceq Mono = ( 𝑐 ∈ Cat ↦ ( Base ‘ 𝑐 ) / 𝑏 ( Hom ‘ 𝑐 ) / ( 𝑥𝑏 , 𝑦𝑏 ↦ { 𝑓 ∈ ( 𝑥 𝑦 ) ∣ ∀ 𝑧𝑏 Fun ( 𝑔 ∈ ( 𝑧 𝑥 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑥 ⟩ ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) )