Metamath Proof Explorer


Definition df-mpo

Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from x , y (in A X. B ) to C ( x , y ) ". An extension of df-mpt for two arguments. (Contributed by NM, 17-Feb-2008)

Ref Expression
Assertion df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 cA 𝐴
2 vy 𝑦
3 cB 𝐵
4 cC 𝐶
5 0 2 1 3 4 cmpo ( 𝑥𝐴 , 𝑦𝐵𝐶 )
6 vz 𝑧
7 0 cv 𝑥
8 7 1 wcel 𝑥𝐴
9 2 cv 𝑦
10 9 3 wcel 𝑦𝐵
11 8 10 wa ( 𝑥𝐴𝑦𝐵 )
12 6 cv 𝑧
13 12 4 wceq 𝑧 = 𝐶
14 11 13 wa ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 )
15 14 0 2 6 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
16 5 15 wceq ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }