Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
df-mpo
Metamath Proof Explorer
Description: Define maps-to notation for defining an operation via a rule. Read as
"the operation defined by the map from x , y (in A X. B ) to
C ( x , y ) ". An extension of df-mpt for two arguments.
(Contributed by NM , 17-Feb-2008)
Ref
Expression
Assertion
df-mpo
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
vx
⊢ 𝑥
1
cA
⊢ 𝐴
2
vy
⊢ 𝑦
3
cB
⊢ 𝐵
4
cC
⊢ 𝐶
5
0 2 1 3 4
cmpo
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 )
6
vz
⊢ 𝑧
7
0
cv
⊢ 𝑥
8
7 1
wcel
⊢ 𝑥 ∈ 𝐴
9
2
cv
⊢ 𝑦
10
9 3
wcel
⊢ 𝑦 ∈ 𝐵
11
8 10
wa
⊢ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 )
12
6
cv
⊢ 𝑧
13
12 4
wceq
⊢ 𝑧 = 𝐶
14
11 13
wa
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 )
15
14 0 2 6
coprab
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) }
16
5 15
wceq
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) }