Metamath Proof Explorer


Definition df-mr

Description: Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-mr ·R = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmr ·R
1 vx 𝑥
2 vy 𝑦
3 vz 𝑧
4 1 cv 𝑥
5 cnr R
6 4 5 wcel 𝑥R
7 2 cv 𝑦
8 7 5 wcel 𝑦R
9 6 8 wa ( 𝑥R𝑦R )
10 vw 𝑤
11 vv 𝑣
12 vu 𝑢
13 vf 𝑓
14 10 cv 𝑤
15 11 cv 𝑣
16 14 15 cop 𝑤 , 𝑣
17 cer ~R
18 16 17 cec [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R
19 4 18 wceq 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R
20 12 cv 𝑢
21 13 cv 𝑓
22 20 21 cop 𝑢 , 𝑓
23 22 17 cec [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R
24 7 23 wceq 𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R
25 19 24 wa ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R )
26 3 cv 𝑧
27 cmp ·P
28 14 20 27 co ( 𝑤 ·P 𝑢 )
29 cpp +P
30 15 21 27 co ( 𝑣 ·P 𝑓 )
31 28 30 29 co ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) )
32 14 21 27 co ( 𝑤 ·P 𝑓 )
33 15 20 27 co ( 𝑣 ·P 𝑢 )
34 32 33 29 co ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) )
35 31 34 cop ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩
36 35 17 cec [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R
37 26 36 wceq 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R
38 25 37 wa ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R )
39 38 13 wex 𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R )
40 39 12 wex 𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R )
41 40 11 wex 𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R )
42 41 10 wex 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R )
43 9 42 wa ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) )
44 43 1 2 3 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }
45 0 44 wceq ·R = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }