Step |
Hyp |
Ref |
Expression |
0 |
|
cmri |
⊢ mrInd |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
cmre |
⊢ Moore |
3 |
2
|
crn |
⊢ ran Moore |
4 |
3
|
cuni |
⊢ ∪ ran Moore |
5 |
|
vs |
⊢ 𝑠 |
6 |
1
|
cv |
⊢ 𝑐 |
7 |
6
|
cuni |
⊢ ∪ 𝑐 |
8 |
7
|
cpw |
⊢ 𝒫 ∪ 𝑐 |
9 |
|
vx |
⊢ 𝑥 |
10 |
5
|
cv |
⊢ 𝑠 |
11 |
9
|
cv |
⊢ 𝑥 |
12 |
|
cmrc |
⊢ mrCls |
13 |
6 12
|
cfv |
⊢ ( mrCls ‘ 𝑐 ) |
14 |
11
|
csn |
⊢ { 𝑥 } |
15 |
10 14
|
cdif |
⊢ ( 𝑠 ∖ { 𝑥 } ) |
16 |
15 13
|
cfv |
⊢ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
17 |
11 16
|
wcel |
⊢ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
18 |
17
|
wn |
⊢ ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
19 |
18 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
20 |
19 5 8
|
crab |
⊢ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } |
21 |
1 4 20
|
cmpt |
⊢ ( 𝑐 ∈ ∪ ran Moore ↦ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
22 |
0 21
|
wceq |
⊢ mrInd = ( 𝑐 ∈ ∪ ran Moore ↦ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |