| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cms |
⊢ MetSp |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cxms |
⊢ ∞MetSp |
| 3 |
|
cds |
⊢ dist |
| 4 |
1
|
cv |
⊢ 𝑓 |
| 5 |
4 3
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
| 6 |
|
cbs |
⊢ Base |
| 7 |
4 6
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 8 |
7 7
|
cxp |
⊢ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) |
| 9 |
5 8
|
cres |
⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) |
| 10 |
|
cmet |
⊢ Met |
| 11 |
7 10
|
cfv |
⊢ ( Met ‘ ( Base ‘ 𝑓 ) ) |
| 12 |
9 11
|
wcel |
⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) |
| 13 |
12 1 2
|
crab |
⊢ { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |
| 14 |
0 13
|
wceq |
⊢ MetSp = { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |