Metamath Proof Explorer


Definition df-ms

Description: Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion df-ms MetSp = { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cms MetSp
1 vf 𝑓
2 cxms ∞MetSp
3 cds dist
4 1 cv 𝑓
5 4 3 cfv ( dist ‘ 𝑓 )
6 cbs Base
7 4 6 cfv ( Base ‘ 𝑓 )
8 7 7 cxp ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) )
9 5 8 cres ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) )
10 cmet Met
11 7 10 cfv ( Met ‘ ( Base ‘ 𝑓 ) )
12 9 11 wcel ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) )
13 12 1 2 crab { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) }
14 0 13 wceq MetSp = { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) }