Step |
Hyp |
Ref |
Expression |
0 |
|
cms |
⊢ MetSp |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cxms |
⊢ ∞MetSp |
3 |
|
cds |
⊢ dist |
4 |
1
|
cv |
⊢ 𝑓 |
5 |
4 3
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
6 |
|
cbs |
⊢ Base |
7 |
4 6
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
8 |
7 7
|
cxp |
⊢ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) |
9 |
5 8
|
cres |
⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) |
10 |
|
cmet |
⊢ Met |
11 |
7 10
|
cfv |
⊢ ( Met ‘ ( Base ‘ 𝑓 ) ) |
12 |
9 11
|
wcel |
⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) |
13 |
12 1 2
|
crab |
⊢ { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |
14 |
0 13
|
wceq |
⊢ MetSp = { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |