Step |
Hyp |
Ref |
Expression |
0 |
|
cmu |
⊢ μ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cn |
⊢ ℕ |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cprime |
⊢ ℙ |
5 |
3
|
cv |
⊢ 𝑝 |
6 |
|
cexp |
⊢ ↑ |
7 |
|
c2 |
⊢ 2 |
8 |
5 7 6
|
co |
⊢ ( 𝑝 ↑ 2 ) |
9 |
|
cdvds |
⊢ ∥ |
10 |
1
|
cv |
⊢ 𝑥 |
11 |
8 10 9
|
wbr |
⊢ ( 𝑝 ↑ 2 ) ∥ 𝑥 |
12 |
11 3 4
|
wrex |
⊢ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 |
13 |
|
cc0 |
⊢ 0 |
14 |
|
c1 |
⊢ 1 |
15 |
14
|
cneg |
⊢ - 1 |
16 |
|
chash |
⊢ ♯ |
17 |
5 10 9
|
wbr |
⊢ 𝑝 ∥ 𝑥 |
18 |
17 3 4
|
crab |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } |
19 |
18 16
|
cfv |
⊢ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) |
20 |
15 19 6
|
co |
⊢ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) |
21 |
12 13 20
|
cif |
⊢ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) |
22 |
1 2 21
|
cmpt |
⊢ ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) |
23 |
0 22
|
wceq |
⊢ μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) |