Metamath Proof Explorer


Definition df-mu

Description: Define the Möbius function, which is zero for non-squarefree numbers and is -u 1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in ApostolNT p. 24. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion df-mu μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmu μ
1 vx 𝑥
2 cn
3 vp 𝑝
4 cprime
5 3 cv 𝑝
6 cexp
7 c2 2
8 5 7 6 co ( 𝑝 ↑ 2 )
9 cdvds
10 1 cv 𝑥
11 8 10 9 wbr ( 𝑝 ↑ 2 ) ∥ 𝑥
12 11 3 4 wrex 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥
13 cc0 0
14 c1 1
15 14 cneg - 1
16 chash
17 5 10 9 wbr 𝑝𝑥
18 17 3 4 crab { 𝑝 ∈ ℙ ∣ 𝑝𝑥 }
19 18 16 cfv ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } )
20 15 19 6 co ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } ) )
21 12 13 20 cif if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } ) ) )
22 1 2 21 cmpt ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } ) ) ) )
23 0 22 wceq μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } ) ) ) )