Metamath Proof Explorer


Definition df-mul

Description: Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-mul · = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmul ·
1 vx 𝑥
2 vy 𝑦
3 vz 𝑧
4 1 cv 𝑥
5 cc
6 4 5 wcel 𝑥 ∈ ℂ
7 2 cv 𝑦
8 7 5 wcel 𝑦 ∈ ℂ
9 6 8 wa ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ )
10 vw 𝑤
11 vv 𝑣
12 vu 𝑢
13 vf 𝑓
14 10 cv 𝑤
15 11 cv 𝑣
16 14 15 cop 𝑤 , 𝑣
17 4 16 wceq 𝑥 = ⟨ 𝑤 , 𝑣
18 12 cv 𝑢
19 13 cv 𝑓
20 18 19 cop 𝑢 , 𝑓
21 7 20 wceq 𝑦 = ⟨ 𝑢 , 𝑓
22 17 21 wa ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ )
23 3 cv 𝑧
24 cmr ·R
25 14 18 24 co ( 𝑤 ·R 𝑢 )
26 cplr +R
27 cm1r -1R
28 15 19 24 co ( 𝑣 ·R 𝑓 )
29 27 28 24 co ( -1R ·R ( 𝑣 ·R 𝑓 ) )
30 25 29 26 co ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) )
31 15 18 24 co ( 𝑣 ·R 𝑢 )
32 14 19 24 co ( 𝑤 ·R 𝑓 )
33 31 32 26 co ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) )
34 30 33 cop ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩
35 23 34 wceq 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩
36 22 35 wa ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ )
37 36 13 wex 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ )
38 37 12 wex 𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ )
39 38 11 wex 𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ )
40 39 10 wex 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ )
41 9 40 wa ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ ) )
42 41 1 2 3 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ ) ) }
43 0 42 wceq · = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) ⟩ ) ) }