Step |
Hyp |
Ref |
Expression |
0 |
|
cmg |
⊢ .g |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vn |
⊢ 𝑛 |
4 |
|
cz |
⊢ ℤ |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
9 |
3
|
cv |
⊢ 𝑛 |
10 |
|
cc0 |
⊢ 0 |
11 |
9 10
|
wceq |
⊢ 𝑛 = 0 |
12 |
|
c0g |
⊢ 0g |
13 |
7 12
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
14 |
|
c1 |
⊢ 1 |
15 |
|
cplusg |
⊢ +g |
16 |
7 15
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
17 |
|
cn |
⊢ ℕ |
18 |
5
|
cv |
⊢ 𝑥 |
19 |
18
|
csn |
⊢ { 𝑥 } |
20 |
17 19
|
cxp |
⊢ ( ℕ × { 𝑥 } ) |
21 |
16 20 14
|
cseq |
⊢ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) |
22 |
|
vs |
⊢ 𝑠 |
23 |
|
clt |
⊢ < |
24 |
10 9 23
|
wbr |
⊢ 0 < 𝑛 |
25 |
22
|
cv |
⊢ 𝑠 |
26 |
9 25
|
cfv |
⊢ ( 𝑠 ‘ 𝑛 ) |
27 |
|
cminusg |
⊢ invg |
28 |
7 27
|
cfv |
⊢ ( invg ‘ 𝑔 ) |
29 |
9
|
cneg |
⊢ - 𝑛 |
30 |
29 25
|
cfv |
⊢ ( 𝑠 ‘ - 𝑛 ) |
31 |
30 28
|
cfv |
⊢ ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) |
32 |
24 26 31
|
cif |
⊢ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) |
33 |
22 21 32
|
csb |
⊢ ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) |
34 |
11 13 33
|
cif |
⊢ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) |
35 |
3 5 4 8 34
|
cmpo |
⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) |
36 |
1 2 35
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) |
37 |
0 36
|
wceq |
⊢ .g = ( 𝑔 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) |