Step |
Hyp |
Ref |
Expression |
0 |
|
cmuls |
⊢ ·s |
1 |
|
vz |
⊢ 𝑧 |
2 |
|
cvv |
⊢ V |
3 |
|
vm |
⊢ 𝑚 |
4 |
|
c1st |
⊢ 1st |
5 |
1
|
cv |
⊢ 𝑧 |
6 |
5 4
|
cfv |
⊢ ( 1st ‘ 𝑧 ) |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
c2nd |
⊢ 2nd |
9 |
5 8
|
cfv |
⊢ ( 2nd ‘ 𝑧 ) |
10 |
|
vy |
⊢ 𝑦 |
11 |
|
va |
⊢ 𝑎 |
12 |
|
vp |
⊢ 𝑝 |
13 |
|
cleft |
⊢ L |
14 |
7
|
cv |
⊢ 𝑥 |
15 |
14 13
|
cfv |
⊢ ( L ‘ 𝑥 ) |
16 |
|
vq |
⊢ 𝑞 |
17 |
10
|
cv |
⊢ 𝑦 |
18 |
17 13
|
cfv |
⊢ ( L ‘ 𝑦 ) |
19 |
11
|
cv |
⊢ 𝑎 |
20 |
12
|
cv |
⊢ 𝑝 |
21 |
3
|
cv |
⊢ 𝑚 |
22 |
20 17 21
|
co |
⊢ ( 𝑝 𝑚 𝑦 ) |
23 |
|
cadds |
⊢ +s |
24 |
16
|
cv |
⊢ 𝑞 |
25 |
14 24 21
|
co |
⊢ ( 𝑥 𝑚 𝑞 ) |
26 |
22 25 23
|
co |
⊢ ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) |
27 |
|
csubs |
⊢ -s |
28 |
20 24 21
|
co |
⊢ ( 𝑝 𝑚 𝑞 ) |
29 |
26 28 27
|
co |
⊢ ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) |
30 |
19 29
|
wceq |
⊢ 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) |
31 |
30 16 18
|
wrex |
⊢ ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) |
32 |
31 12 15
|
wrex |
⊢ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) |
33 |
32 11
|
cab |
⊢ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } |
34 |
|
vb |
⊢ 𝑏 |
35 |
|
vr |
⊢ 𝑟 |
36 |
|
cright |
⊢ R |
37 |
14 36
|
cfv |
⊢ ( R ‘ 𝑥 ) |
38 |
|
vs |
⊢ 𝑠 |
39 |
17 36
|
cfv |
⊢ ( R ‘ 𝑦 ) |
40 |
34
|
cv |
⊢ 𝑏 |
41 |
35
|
cv |
⊢ 𝑟 |
42 |
41 17 21
|
co |
⊢ ( 𝑟 𝑚 𝑦 ) |
43 |
38
|
cv |
⊢ 𝑠 |
44 |
14 43 21
|
co |
⊢ ( 𝑥 𝑚 𝑠 ) |
45 |
42 44 23
|
co |
⊢ ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) |
46 |
41 43 21
|
co |
⊢ ( 𝑟 𝑚 𝑠 ) |
47 |
45 46 27
|
co |
⊢ ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) |
48 |
40 47
|
wceq |
⊢ 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) |
49 |
48 38 39
|
wrex |
⊢ ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) |
50 |
49 35 37
|
wrex |
⊢ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) |
51 |
50 34
|
cab |
⊢ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } |
52 |
33 51
|
cun |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |
53 |
|
cscut |
⊢ |s |
54 |
|
vc |
⊢ 𝑐 |
55 |
|
vt |
⊢ 𝑡 |
56 |
|
vu |
⊢ 𝑢 |
57 |
54
|
cv |
⊢ 𝑐 |
58 |
55
|
cv |
⊢ 𝑡 |
59 |
58 17 21
|
co |
⊢ ( 𝑡 𝑚 𝑦 ) |
60 |
56
|
cv |
⊢ 𝑢 |
61 |
14 60 21
|
co |
⊢ ( 𝑥 𝑚 𝑢 ) |
62 |
59 61 23
|
co |
⊢ ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) |
63 |
58 60 21
|
co |
⊢ ( 𝑡 𝑚 𝑢 ) |
64 |
62 63 27
|
co |
⊢ ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) |
65 |
57 64
|
wceq |
⊢ 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) |
66 |
65 56 39
|
wrex |
⊢ ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) |
67 |
66 55 15
|
wrex |
⊢ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) |
68 |
67 54
|
cab |
⊢ { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } |
69 |
|
vd |
⊢ 𝑑 |
70 |
|
vv |
⊢ 𝑣 |
71 |
|
vw |
⊢ 𝑤 |
72 |
69
|
cv |
⊢ 𝑑 |
73 |
70
|
cv |
⊢ 𝑣 |
74 |
73 17 21
|
co |
⊢ ( 𝑣 𝑚 𝑦 ) |
75 |
71
|
cv |
⊢ 𝑤 |
76 |
14 75 21
|
co |
⊢ ( 𝑥 𝑚 𝑤 ) |
77 |
74 76 23
|
co |
⊢ ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) |
78 |
73 75 21
|
co |
⊢ ( 𝑣 𝑚 𝑤 ) |
79 |
77 78 27
|
co |
⊢ ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) |
80 |
72 79
|
wceq |
⊢ 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) |
81 |
80 71 18
|
wrex |
⊢ ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) |
82 |
81 70 37
|
wrex |
⊢ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) |
83 |
82 69
|
cab |
⊢ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } |
84 |
68 83
|
cun |
⊢ ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) |
85 |
52 84 53
|
co |
⊢ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) |
86 |
10 9 85
|
csb |
⊢ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) |
87 |
7 6 86
|
csb |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) |
88 |
1 3 2 2 87
|
cmpo |
⊢ ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) |
89 |
88
|
cnorec2 |
⊢ norec2 ( ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) ) |
90 |
0 89
|
wceq |
⊢ ·s = norec2 ( ( 𝑧 ∈ V , 𝑚 ∈ V ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝑥 ) ∃ 𝑞 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑝 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑞 ) ) -s ( 𝑝 𝑚 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) ∃ 𝑠 ∈ ( R ‘ 𝑦 ) 𝑏 = ( ( ( 𝑟 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑠 ) ) -s ( 𝑟 𝑚 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝑥 ) ∃ 𝑢 ∈ ( R ‘ 𝑦 ) 𝑐 = ( ( ( 𝑡 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑢 ) ) -s ( 𝑡 𝑚 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝑥 ) ∃ 𝑤 ∈ ( L ‘ 𝑦 ) 𝑑 = ( ( ( 𝑣 𝑚 𝑦 ) +s ( 𝑥 𝑚 𝑤 ) ) -s ( 𝑣 𝑚 𝑤 ) ) } ) ) ) ) |