Step |
Hyp |
Ref |
Expression |
0 |
|
cmzpcl |
⊢ mzPolyCld |
1 |
|
vv |
⊢ 𝑣 |
2 |
|
cvv |
⊢ V |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cz |
⊢ ℤ |
5 |
|
cmap |
⊢ ↑m |
6 |
1
|
cv |
⊢ 𝑣 |
7 |
4 6 5
|
co |
⊢ ( ℤ ↑m 𝑣 ) |
8 |
4 7 5
|
co |
⊢ ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) |
9 |
8
|
cpw |
⊢ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) |
10 |
|
vi |
⊢ 𝑖 |
11 |
10
|
cv |
⊢ 𝑖 |
12 |
11
|
csn |
⊢ { 𝑖 } |
13 |
7 12
|
cxp |
⊢ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) |
14 |
3
|
cv |
⊢ 𝑝 |
15 |
13 14
|
wcel |
⊢ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 |
16 |
15 10 4
|
wral |
⊢ ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 |
17 |
|
vj |
⊢ 𝑗 |
18 |
|
vx |
⊢ 𝑥 |
19 |
18
|
cv |
⊢ 𝑥 |
20 |
17
|
cv |
⊢ 𝑗 |
21 |
20 19
|
cfv |
⊢ ( 𝑥 ‘ 𝑗 ) |
22 |
18 7 21
|
cmpt |
⊢ ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) |
23 |
22 14
|
wcel |
⊢ ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 |
24 |
23 17 6
|
wral |
⊢ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 |
25 |
16 24
|
wa |
⊢ ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) |
26 |
|
vf |
⊢ 𝑓 |
27 |
|
vg |
⊢ 𝑔 |
28 |
26
|
cv |
⊢ 𝑓 |
29 |
|
caddc |
⊢ + |
30 |
29
|
cof |
⊢ ∘f + |
31 |
27
|
cv |
⊢ 𝑔 |
32 |
28 31 30
|
co |
⊢ ( 𝑓 ∘f + 𝑔 ) |
33 |
32 14
|
wcel |
⊢ ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 |
34 |
|
cmul |
⊢ · |
35 |
34
|
cof |
⊢ ∘f · |
36 |
28 31 35
|
co |
⊢ ( 𝑓 ∘f · 𝑔 ) |
37 |
36 14
|
wcel |
⊢ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 |
38 |
33 37
|
wa |
⊢ ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) |
39 |
38 27 14
|
wral |
⊢ ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) |
40 |
39 26 14
|
wral |
⊢ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) |
41 |
25 40
|
wa |
⊢ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) |
42 |
41 3 9
|
crab |
⊢ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } |
43 |
1 2 42
|
cmpt |
⊢ ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ) |
44 |
0 43
|
wceq |
⊢ mzPolyCld = ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ) |