Metamath Proof Explorer


Definition df-mzpcl

Description: Define the polynomially closed function rings over an arbitrary index set v . The set ( mzPolyCldv ) contains all sets of functions from ( ZZ ^m v ) to ZZ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself ( mzPolyv ) ; see df-mzp . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion df-mzpcl mzPolyCld = ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓𝑝𝑔𝑝 ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmzpcl mzPolyCld
1 vv 𝑣
2 cvv V
3 vp 𝑝
4 cz
5 cmap m
6 1 cv 𝑣
7 4 6 5 co ( ℤ ↑m 𝑣 )
8 4 7 5 co ( ℤ ↑m ( ℤ ↑m 𝑣 ) )
9 8 cpw 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) )
10 vi 𝑖
11 10 cv 𝑖
12 11 csn { 𝑖 }
13 7 12 cxp ( ( ℤ ↑m 𝑣 ) × { 𝑖 } )
14 3 cv 𝑝
15 13 14 wcel ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝
16 15 10 4 wral 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝
17 vj 𝑗
18 vx 𝑥
19 18 cv 𝑥
20 17 cv 𝑗
21 20 19 cfv ( 𝑥𝑗 )
22 18 7 21 cmpt ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) )
23 22 14 wcel ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝
24 23 17 6 wral 𝑗𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝
25 16 24 wa ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝 )
26 vf 𝑓
27 vg 𝑔
28 26 cv 𝑓
29 caddc +
30 29 cof f +
31 27 cv 𝑔
32 28 31 30 co ( 𝑓f + 𝑔 )
33 32 14 wcel ( 𝑓f + 𝑔 ) ∈ 𝑝
34 cmul ·
35 34 cof f ·
36 28 31 35 co ( 𝑓f · 𝑔 )
37 36 14 wcel ( 𝑓f · 𝑔 ) ∈ 𝑝
38 33 37 wa ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 )
39 38 27 14 wral 𝑔𝑝 ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 )
40 39 26 14 wral 𝑓𝑝𝑔𝑝 ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 )
41 25 40 wa ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓𝑝𝑔𝑝 ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 ) )
42 41 3 9 crab { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓𝑝𝑔𝑝 ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 ) ) }
43 1 2 42 cmpt ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓𝑝𝑔𝑝 ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 ) ) } )
44 0 43 wceq mzPolyCld = ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓𝑝𝑔𝑝 ( ( 𝑓f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑝 ) ) } )