Metamath Proof Explorer


Definition df-nacs

Description: Define a closure system ofNoetherian type (not standard terminology) as an algebraic system where all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion df-nacs NoeACS = ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠𝑐𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnacs NoeACS
1 vx 𝑥
2 cvv V
3 vc 𝑐
4 cacs ACS
5 1 cv 𝑥
6 5 4 cfv ( ACS ‘ 𝑥 )
7 vs 𝑠
8 3 cv 𝑐
9 vg 𝑔
10 5 cpw 𝒫 𝑥
11 cfn Fin
12 10 11 cin ( 𝒫 𝑥 ∩ Fin )
13 7 cv 𝑠
14 cmrc mrCls
15 8 14 cfv ( mrCls ‘ 𝑐 )
16 9 cv 𝑔
17 16 15 cfv ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 )
18 13 17 wceq 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 )
19 18 9 12 wrex 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 )
20 19 7 8 wral 𝑠𝑐𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 )
21 20 3 6 crab { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠𝑐𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) }
22 1 2 21 cmpt ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠𝑐𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } )
23 0 22 wceq NoeACS = ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠𝑐𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } )