| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnacs | ⊢ NoeACS | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vc | ⊢ 𝑐 | 
						
							| 4 |  | cacs | ⊢ ACS | 
						
							| 5 | 1 | cv | ⊢ 𝑥 | 
						
							| 6 | 5 4 | cfv | ⊢ ( ACS ‘ 𝑥 ) | 
						
							| 7 |  | vs | ⊢ 𝑠 | 
						
							| 8 | 3 | cv | ⊢ 𝑐 | 
						
							| 9 |  | vg | ⊢ 𝑔 | 
						
							| 10 | 5 | cpw | ⊢ 𝒫  𝑥 | 
						
							| 11 |  | cfn | ⊢ Fin | 
						
							| 12 | 10 11 | cin | ⊢ ( 𝒫  𝑥  ∩  Fin ) | 
						
							| 13 | 7 | cv | ⊢ 𝑠 | 
						
							| 14 |  | cmrc | ⊢ mrCls | 
						
							| 15 | 8 14 | cfv | ⊢ ( mrCls ‘ 𝑐 ) | 
						
							| 16 | 9 | cv | ⊢ 𝑔 | 
						
							| 17 | 16 15 | cfv | ⊢ ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) | 
						
							| 18 | 13 17 | wceq | ⊢ 𝑠  =  ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) | 
						
							| 19 | 18 9 12 | wrex | ⊢ ∃ 𝑔  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑠  =  ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) | 
						
							| 20 | 19 7 8 | wral | ⊢ ∀ 𝑠  ∈  𝑐 ∃ 𝑔  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑠  =  ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) | 
						
							| 21 | 20 3 6 | crab | ⊢ { 𝑐  ∈  ( ACS ‘ 𝑥 )  ∣  ∀ 𝑠  ∈  𝑐 ∃ 𝑔  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑠  =  ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } | 
						
							| 22 | 1 2 21 | cmpt | ⊢ ( 𝑥  ∈  V  ↦  { 𝑐  ∈  ( ACS ‘ 𝑥 )  ∣  ∀ 𝑠  ∈  𝑐 ∃ 𝑔  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑠  =  ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } ) | 
						
							| 23 | 0 22 | wceq | ⊢ NoeACS  =  ( 𝑥  ∈  V  ↦  { 𝑐  ∈  ( ACS ‘ 𝑥 )  ∣  ∀ 𝑠  ∈  𝑐 ∃ 𝑔  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑠  =  ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } ) |