Step |
Hyp |
Ref |
Expression |
0 |
|
cnacs |
⊢ NoeACS |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vc |
⊢ 𝑐 |
4 |
|
cacs |
⊢ ACS |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
5 4
|
cfv |
⊢ ( ACS ‘ 𝑥 ) |
7 |
|
vs |
⊢ 𝑠 |
8 |
3
|
cv |
⊢ 𝑐 |
9 |
|
vg |
⊢ 𝑔 |
10 |
5
|
cpw |
⊢ 𝒫 𝑥 |
11 |
|
cfn |
⊢ Fin |
12 |
10 11
|
cin |
⊢ ( 𝒫 𝑥 ∩ Fin ) |
13 |
7
|
cv |
⊢ 𝑠 |
14 |
|
cmrc |
⊢ mrCls |
15 |
8 14
|
cfv |
⊢ ( mrCls ‘ 𝑐 ) |
16 |
9
|
cv |
⊢ 𝑔 |
17 |
16 15
|
cfv |
⊢ ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
18 |
13 17
|
wceq |
⊢ 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
19 |
18 9 12
|
wrex |
⊢ ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
20 |
19 7 8
|
wral |
⊢ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
21 |
20 3 6
|
crab |
⊢ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } |
22 |
1 2 21
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } ) |
23 |
0 22
|
wceq |
⊢ NoeACS = ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } ) |