Step |
Hyp |
Ref |
Expression |
0 |
|
cnat |
⊢ Nat |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
ccat |
⊢ Cat |
3 |
|
vu |
⊢ 𝑢 |
4 |
|
vf |
⊢ 𝑓 |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
|
cfunc |
⊢ Func |
7 |
3
|
cv |
⊢ 𝑢 |
8 |
5 7 6
|
co |
⊢ ( 𝑡 Func 𝑢 ) |
9 |
|
vg |
⊢ 𝑔 |
10 |
|
c1st |
⊢ 1st |
11 |
4
|
cv |
⊢ 𝑓 |
12 |
11 10
|
cfv |
⊢ ( 1st ‘ 𝑓 ) |
13 |
|
vr |
⊢ 𝑟 |
14 |
9
|
cv |
⊢ 𝑔 |
15 |
14 10
|
cfv |
⊢ ( 1st ‘ 𝑔 ) |
16 |
|
vs |
⊢ 𝑠 |
17 |
|
va |
⊢ 𝑎 |
18 |
|
vx |
⊢ 𝑥 |
19 |
|
cbs |
⊢ Base |
20 |
5 19
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
21 |
13
|
cv |
⊢ 𝑟 |
22 |
18
|
cv |
⊢ 𝑥 |
23 |
22 21
|
cfv |
⊢ ( 𝑟 ‘ 𝑥 ) |
24 |
|
chom |
⊢ Hom |
25 |
7 24
|
cfv |
⊢ ( Hom ‘ 𝑢 ) |
26 |
16
|
cv |
⊢ 𝑠 |
27 |
22 26
|
cfv |
⊢ ( 𝑠 ‘ 𝑥 ) |
28 |
23 27 25
|
co |
⊢ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) |
29 |
18 20 28
|
cixp |
⊢ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) |
30 |
|
vy |
⊢ 𝑦 |
31 |
|
vh |
⊢ ℎ |
32 |
5 24
|
cfv |
⊢ ( Hom ‘ 𝑡 ) |
33 |
30
|
cv |
⊢ 𝑦 |
34 |
22 33 32
|
co |
⊢ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) |
35 |
17
|
cv |
⊢ 𝑎 |
36 |
33 35
|
cfv |
⊢ ( 𝑎 ‘ 𝑦 ) |
37 |
33 21
|
cfv |
⊢ ( 𝑟 ‘ 𝑦 ) |
38 |
23 37
|
cop |
⊢ 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 |
39 |
|
cco |
⊢ comp |
40 |
7 39
|
cfv |
⊢ ( comp ‘ 𝑢 ) |
41 |
33 26
|
cfv |
⊢ ( 𝑠 ‘ 𝑦 ) |
42 |
38 41 40
|
co |
⊢ ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
43 |
|
c2nd |
⊢ 2nd |
44 |
11 43
|
cfv |
⊢ ( 2nd ‘ 𝑓 ) |
45 |
22 33 44
|
co |
⊢ ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) |
46 |
31
|
cv |
⊢ ℎ |
47 |
46 45
|
cfv |
⊢ ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) |
48 |
36 47 42
|
co |
⊢ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) |
49 |
14 43
|
cfv |
⊢ ( 2nd ‘ 𝑔 ) |
50 |
22 33 49
|
co |
⊢ ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) |
51 |
46 50
|
cfv |
⊢ ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) |
52 |
23 27
|
cop |
⊢ 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 |
53 |
52 41 40
|
co |
⊢ ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
54 |
22 35
|
cfv |
⊢ ( 𝑎 ‘ 𝑥 ) |
55 |
51 54 53
|
co |
⊢ ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
56 |
48 55
|
wceq |
⊢ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
57 |
56 31 34
|
wral |
⊢ ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
58 |
57 30 20
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
59 |
58 18 20
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
60 |
59 17 29
|
crab |
⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
61 |
16 15 60
|
csb |
⊢ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
62 |
13 12 61
|
csb |
⊢ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
63 |
4 9 8 8 62
|
cmpo |
⊢ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
64 |
1 3 2 2 63
|
cmpo |
⊢ ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
65 |
0 64
|
wceq |
⊢ Nat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |