Metamath Proof Explorer


Definition df-nei

Description: Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007)

Ref Expression
Assertion df-nei nei = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦 ∈ 𝒫 𝑗 ∣ ∃ 𝑔𝑗 ( 𝑥𝑔𝑔𝑦 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnei nei
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 4 cuni 𝑗
6 5 cpw 𝒫 𝑗
7 vy 𝑦
8 vg 𝑔
9 3 cv 𝑥
10 8 cv 𝑔
11 9 10 wss 𝑥𝑔
12 7 cv 𝑦
13 10 12 wss 𝑔𝑦
14 11 13 wa ( 𝑥𝑔𝑔𝑦 )
15 14 8 4 wrex 𝑔𝑗 ( 𝑥𝑔𝑔𝑦 )
16 15 7 6 crab { 𝑦 ∈ 𝒫 𝑗 ∣ ∃ 𝑔𝑗 ( 𝑥𝑔𝑔𝑦 ) }
17 3 6 16 cmpt ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦 ∈ 𝒫 𝑗 ∣ ∃ 𝑔𝑗 ( 𝑥𝑔𝑔𝑦 ) } )
18 1 2 17 cmpt ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦 ∈ 𝒫 𝑗 ∣ ∃ 𝑔𝑗 ( 𝑥𝑔𝑔𝑦 ) } ) )
19 0 18 wceq nei = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 ↦ { 𝑦 ∈ 𝒫 𝑗 ∣ ∃ 𝑔𝑗 ( 𝑥𝑔𝑔𝑦 ) } ) )