Description: Define negated membership. (Contributed by NM, 7-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nel | ⊢ ( 𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | 0 1 | wnel | ⊢ 𝐴 ∉ 𝐵 |
| 3 | 0 1 | wcel | ⊢ 𝐴 ∈ 𝐵 |
| 4 | 3 | wn | ⊢ ¬ 𝐴 ∈ 𝐵 |
| 5 | 2 4 | wb | ⊢ ( 𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵 ) |