Metamath Proof Explorer
		
		
		
		Description:  Define the null space of a Hilbert space functional.  (Contributed by NM, 11-Feb-2006)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-nlfn | ⊢  null  =  ( 𝑡  ∈  ( ℂ  ↑m   ℋ )  ↦  ( ◡ 𝑡  “  { 0 } ) ) | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnl | ⊢ null | 
						
							| 1 |  | vt | ⊢ 𝑡 | 
						
							| 2 |  | cc | ⊢ ℂ | 
						
							| 3 |  | cmap | ⊢  ↑m | 
						
							| 4 |  | chba | ⊢  ℋ | 
						
							| 5 | 2 4 3 | co | ⊢ ( ℂ  ↑m   ℋ ) | 
						
							| 6 | 1 | cv | ⊢ 𝑡 | 
						
							| 7 | 6 | ccnv | ⊢ ◡ 𝑡 | 
						
							| 8 |  | cc0 | ⊢ 0 | 
						
							| 9 | 8 | csn | ⊢ { 0 } | 
						
							| 10 | 7 9 | cima | ⊢ ( ◡ 𝑡  “  { 0 } ) | 
						
							| 11 | 1 5 10 | cmpt | ⊢ ( 𝑡  ∈  ( ℂ  ↑m   ℋ )  ↦  ( ◡ 𝑡  “  { 0 } ) ) | 
						
							| 12 | 0 11 | wceq | ⊢ null  =  ( 𝑡  ∈  ( ℂ  ↑m   ℋ )  ↦  ( ◡ 𝑡  “  { 0 } ) ) |