| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnlm |
⊢ NrmMod |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cngp |
⊢ NrmGrp |
| 3 |
|
clmod |
⊢ LMod |
| 4 |
2 3
|
cin |
⊢ ( NrmGrp ∩ LMod ) |
| 5 |
|
csca |
⊢ Scalar |
| 6 |
1
|
cv |
⊢ 𝑤 |
| 7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
| 8 |
|
vf |
⊢ 𝑓 |
| 9 |
8
|
cv |
⊢ 𝑓 |
| 10 |
|
cnrg |
⊢ NrmRing |
| 11 |
9 10
|
wcel |
⊢ 𝑓 ∈ NrmRing |
| 12 |
|
vx |
⊢ 𝑥 |
| 13 |
|
cbs |
⊢ Base |
| 14 |
9 13
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 15 |
|
vy |
⊢ 𝑦 |
| 16 |
6 13
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 17 |
|
cnm |
⊢ norm |
| 18 |
6 17
|
cfv |
⊢ ( norm ‘ 𝑤 ) |
| 19 |
12
|
cv |
⊢ 𝑥 |
| 20 |
|
cvsca |
⊢ ·𝑠 |
| 21 |
6 20
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
| 22 |
15
|
cv |
⊢ 𝑦 |
| 23 |
19 22 21
|
co |
⊢ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) |
| 24 |
23 18
|
cfv |
⊢ ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) |
| 25 |
9 17
|
cfv |
⊢ ( norm ‘ 𝑓 ) |
| 26 |
19 25
|
cfv |
⊢ ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) |
| 27 |
|
cmul |
⊢ · |
| 28 |
22 18
|
cfv |
⊢ ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) |
| 29 |
26 28 27
|
co |
⊢ ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 30 |
24 29
|
wceq |
⊢ ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 31 |
30 15 16
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 32 |
31 12 14
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 33 |
11 32
|
wa |
⊢ ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) |
| 34 |
33 8 7
|
wsbc |
⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) |
| 35 |
34 1 4
|
crab |
⊢ { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } |
| 36 |
0 35
|
wceq |
⊢ NrmMod = { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } |