Metamath Proof Explorer


Definition df-nm

Description: Define the norm on a group or ring (when it makes sense) in terms of the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion df-nm norm = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnm norm
1 vw 𝑤
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 3 cv 𝑥
8 cds dist
9 5 8 cfv ( dist ‘ 𝑤 )
10 c0g 0g
11 5 10 cfv ( 0g𝑤 )
12 7 11 9 co ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) )
13 3 6 12 cmpt ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) ) )
14 1 2 13 cmpt ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) ) ) )
15 0 14 wceq norm = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) ) ) )