Description: Define the norm on a group or ring (when it makes sense) in terms of the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nm | ⊢ norm = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnm | ⊢ norm | |
1 | vw | ⊢ 𝑤 | |
2 | cvv | ⊢ V | |
3 | vx | ⊢ 𝑥 | |
4 | cbs | ⊢ Base | |
5 | 1 | cv | ⊢ 𝑤 |
6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
7 | 3 | cv | ⊢ 𝑥 |
8 | cds | ⊢ dist | |
9 | 5 8 | cfv | ⊢ ( dist ‘ 𝑤 ) |
10 | c0g | ⊢ 0g | |
11 | 5 10 | cfv | ⊢ ( 0g ‘ 𝑤 ) |
12 | 7 11 9 | co | ⊢ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) |
13 | 3 6 12 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) |
14 | 1 2 13 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) ) |
15 | 0 14 | wceq | ⊢ norm = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) ) |