Step |
Hyp |
Ref |
Expression |
0 |
|
cnmf |
⊢ normfn |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cc |
⊢ ℂ |
3 |
|
cmap |
⊢ ↑m |
4 |
|
chba |
⊢ ℋ |
5 |
2 4 3
|
co |
⊢ ( ℂ ↑m ℋ ) |
6 |
|
vx |
⊢ 𝑥 |
7 |
|
vz |
⊢ 𝑧 |
8 |
|
cno |
⊢ normℎ |
9 |
7
|
cv |
⊢ 𝑧 |
10 |
9 8
|
cfv |
⊢ ( normℎ ‘ 𝑧 ) |
11 |
|
cle |
⊢ ≤ |
12 |
|
c1 |
⊢ 1 |
13 |
10 12 11
|
wbr |
⊢ ( normℎ ‘ 𝑧 ) ≤ 1 |
14 |
6
|
cv |
⊢ 𝑥 |
15 |
|
cabs |
⊢ abs |
16 |
1
|
cv |
⊢ 𝑡 |
17 |
9 16
|
cfv |
⊢ ( 𝑡 ‘ 𝑧 ) |
18 |
17 15
|
cfv |
⊢ ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) |
19 |
14 18
|
wceq |
⊢ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) |
20 |
13 19
|
wa |
⊢ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
21 |
20 7 4
|
wrex |
⊢ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
22 |
21 6
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } |
23 |
|
cxr |
⊢ ℝ* |
24 |
|
clt |
⊢ < |
25 |
22 23 24
|
csup |
⊢ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
26 |
1 5 25
|
cmpt |
⊢ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
27 |
0 26
|
wceq |
⊢ normfn = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |