Metamath Proof Explorer


Definition df-nmfn

Description: Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-nmfn normfn = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnmf normfn
1 vt 𝑡
2 cc
3 cmap m
4 chba
5 2 4 3 co ( ℂ ↑m ℋ )
6 vx 𝑥
7 vz 𝑧
8 cno norm
9 7 cv 𝑧
10 9 8 cfv ( norm𝑧 )
11 cle
12 c1 1
13 10 12 11 wbr ( norm𝑧 ) ≤ 1
14 6 cv 𝑥
15 cabs abs
16 1 cv 𝑡
17 9 16 cfv ( 𝑡𝑧 )
18 17 15 cfv ( abs ‘ ( 𝑡𝑧 ) )
19 14 18 wceq 𝑥 = ( abs ‘ ( 𝑡𝑧 ) )
20 13 19 wa ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡𝑧 ) ) )
21 20 7 4 wrex 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡𝑧 ) ) )
22 21 6 cab { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡𝑧 ) ) ) }
23 cxr *
24 clt <
25 22 23 24 csup sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < )
26 1 5 25 cmpt ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) )
27 0 26 wceq normfn = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) )