| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnmf |
⊢ normfn |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
cmap |
⊢ ↑m |
| 4 |
|
chba |
⊢ ℋ |
| 5 |
2 4 3
|
co |
⊢ ( ℂ ↑m ℋ ) |
| 6 |
|
vx |
⊢ 𝑥 |
| 7 |
|
vz |
⊢ 𝑧 |
| 8 |
|
cno |
⊢ normℎ |
| 9 |
7
|
cv |
⊢ 𝑧 |
| 10 |
9 8
|
cfv |
⊢ ( normℎ ‘ 𝑧 ) |
| 11 |
|
cle |
⊢ ≤ |
| 12 |
|
c1 |
⊢ 1 |
| 13 |
10 12 11
|
wbr |
⊢ ( normℎ ‘ 𝑧 ) ≤ 1 |
| 14 |
6
|
cv |
⊢ 𝑥 |
| 15 |
|
cabs |
⊢ abs |
| 16 |
1
|
cv |
⊢ 𝑡 |
| 17 |
9 16
|
cfv |
⊢ ( 𝑡 ‘ 𝑧 ) |
| 18 |
17 15
|
cfv |
⊢ ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) |
| 19 |
14 18
|
wceq |
⊢ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) |
| 20 |
13 19
|
wa |
⊢ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 21 |
20 7 4
|
wrex |
⊢ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 22 |
21 6
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } |
| 23 |
|
cxr |
⊢ ℝ* |
| 24 |
|
clt |
⊢ < |
| 25 |
22 23 24
|
csup |
⊢ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
| 26 |
1 5 25
|
cmpt |
⊢ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 27 |
0 26
|
wceq |
⊢ normfn = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |