| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnmo | ⊢  normOp | 
						
							| 1 |  | vs | ⊢ 𝑠 | 
						
							| 2 |  | cngp | ⊢ NrmGrp | 
						
							| 3 |  | vt | ⊢ 𝑡 | 
						
							| 4 |  | vf | ⊢ 𝑓 | 
						
							| 5 | 1 | cv | ⊢ 𝑠 | 
						
							| 6 |  | cghm | ⊢  GrpHom | 
						
							| 7 | 3 | cv | ⊢ 𝑡 | 
						
							| 8 | 5 7 6 | co | ⊢ ( 𝑠  GrpHom  𝑡 ) | 
						
							| 9 |  | vr | ⊢ 𝑟 | 
						
							| 10 |  | cc0 | ⊢ 0 | 
						
							| 11 |  | cico | ⊢ [,) | 
						
							| 12 |  | cpnf | ⊢ +∞ | 
						
							| 13 | 10 12 11 | co | ⊢ ( 0 [,) +∞ ) | 
						
							| 14 |  | vx | ⊢ 𝑥 | 
						
							| 15 |  | cbs | ⊢ Base | 
						
							| 16 | 5 15 | cfv | ⊢ ( Base ‘ 𝑠 ) | 
						
							| 17 |  | cnm | ⊢ norm | 
						
							| 18 | 7 17 | cfv | ⊢ ( norm ‘ 𝑡 ) | 
						
							| 19 | 4 | cv | ⊢ 𝑓 | 
						
							| 20 | 14 | cv | ⊢ 𝑥 | 
						
							| 21 | 20 19 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) | 
						
							| 22 | 21 18 | cfv | ⊢ ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 23 |  | cle | ⊢  ≤ | 
						
							| 24 | 9 | cv | ⊢ 𝑟 | 
						
							| 25 |  | cmul | ⊢  · | 
						
							| 26 | 5 17 | cfv | ⊢ ( norm ‘ 𝑠 ) | 
						
							| 27 | 20 26 | cfv | ⊢ ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) | 
						
							| 28 | 24 27 25 | co | ⊢ ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) | 
						
							| 29 | 22 28 23 | wbr | ⊢ ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) | 
						
							| 30 | 29 14 16 | wral | ⊢ ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) | 
						
							| 31 | 30 9 13 | crab | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } | 
						
							| 32 |  | cxr | ⊢ ℝ* | 
						
							| 33 |  | clt | ⊢  < | 
						
							| 34 | 31 32 33 | cinf | ⊢ inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) | 
						
							| 35 | 4 8 34 | cmpt | ⊢ ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 36 | 1 3 2 2 35 | cmpo | ⊢ ( 𝑠  ∈  NrmGrp ,  𝑡  ∈  NrmGrp  ↦  ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 37 | 0 36 | wceq | ⊢  normOp   =  ( 𝑠  ∈  NrmGrp ,  𝑡  ∈  NrmGrp  ↦  ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ) |