Step |
Hyp |
Ref |
Expression |
0 |
|
cnmoo |
⊢ normOpOLD |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cnv |
⊢ NrmCVec |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
vt |
⊢ 𝑡 |
5 |
|
cba |
⊢ BaseSet |
6 |
3
|
cv |
⊢ 𝑤 |
7 |
6 5
|
cfv |
⊢ ( BaseSet ‘ 𝑤 ) |
8 |
|
cmap |
⊢ ↑m |
9 |
1
|
cv |
⊢ 𝑢 |
10 |
9 5
|
cfv |
⊢ ( BaseSet ‘ 𝑢 ) |
11 |
7 10 8
|
co |
⊢ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) |
12 |
|
vx |
⊢ 𝑥 |
13 |
|
vz |
⊢ 𝑧 |
14 |
|
cnmcv |
⊢ normCV |
15 |
9 14
|
cfv |
⊢ ( normCV ‘ 𝑢 ) |
16 |
13
|
cv |
⊢ 𝑧 |
17 |
16 15
|
cfv |
⊢ ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) |
18 |
|
cle |
⊢ ≤ |
19 |
|
c1 |
⊢ 1 |
20 |
17 19 18
|
wbr |
⊢ ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 |
21 |
12
|
cv |
⊢ 𝑥 |
22 |
6 14
|
cfv |
⊢ ( normCV ‘ 𝑤 ) |
23 |
4
|
cv |
⊢ 𝑡 |
24 |
16 23
|
cfv |
⊢ ( 𝑡 ‘ 𝑧 ) |
25 |
24 22
|
cfv |
⊢ ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) |
26 |
21 25
|
wceq |
⊢ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) |
27 |
20 26
|
wa |
⊢ ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
28 |
27 13 10
|
wrex |
⊢ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
29 |
28 12
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } |
30 |
|
cxr |
⊢ ℝ* |
31 |
|
clt |
⊢ < |
32 |
29 30 31
|
csup |
⊢ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
33 |
4 11 32
|
cmpt |
⊢ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
34 |
1 3 2 2 33
|
cmpo |
⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
35 |
0 34
|
wceq |
⊢ normOpOLD = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |