Step |
Hyp |
Ref |
Expression |
0 |
|
cnop |
⊢ normop |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
chba |
⊢ ℋ |
3 |
|
cmap |
⊢ ↑m |
4 |
2 2 3
|
co |
⊢ ( ℋ ↑m ℋ ) |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
vz |
⊢ 𝑧 |
7 |
|
cno |
⊢ normℎ |
8 |
6
|
cv |
⊢ 𝑧 |
9 |
8 7
|
cfv |
⊢ ( normℎ ‘ 𝑧 ) |
10 |
|
cle |
⊢ ≤ |
11 |
|
c1 |
⊢ 1 |
12 |
9 11 10
|
wbr |
⊢ ( normℎ ‘ 𝑧 ) ≤ 1 |
13 |
5
|
cv |
⊢ 𝑥 |
14 |
1
|
cv |
⊢ 𝑡 |
15 |
8 14
|
cfv |
⊢ ( 𝑡 ‘ 𝑧 ) |
16 |
15 7
|
cfv |
⊢ ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) |
17 |
13 16
|
wceq |
⊢ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) |
18 |
12 17
|
wa |
⊢ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
19 |
18 6 2
|
wrex |
⊢ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
20 |
19 5
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } |
21 |
|
cxr |
⊢ ℝ* |
22 |
|
clt |
⊢ < |
23 |
20 21 22
|
csup |
⊢ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
24 |
1 4 23
|
cmpt |
⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
25 |
0 24
|
wceq |
⊢ normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |