Metamath Proof Explorer


Definition df-nmop

Description: Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-nmop normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnop normop
1 vt 𝑡
2 chba
3 cmap m
4 2 2 3 co ( ℋ ↑m ℋ )
5 vx 𝑥
6 vz 𝑧
7 cno norm
8 6 cv 𝑧
9 8 7 cfv ( norm𝑧 )
10 cle
11 c1 1
12 9 11 10 wbr ( norm𝑧 ) ≤ 1
13 5 cv 𝑥
14 1 cv 𝑡
15 8 14 cfv ( 𝑡𝑧 )
16 15 7 cfv ( norm ‘ ( 𝑡𝑧 ) )
17 13 16 wceq 𝑥 = ( norm ‘ ( 𝑡𝑧 ) )
18 12 17 wa ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑧 ) ) )
19 18 6 2 wrex 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑧 ) ) )
20 19 5 cab { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑧 ) ) ) }
21 cxr *
22 clt <
23 20 21 22 csup sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < )
24 1 4 23 cmpt ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) )
25 0 24 wceq normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( norm𝑧 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) )